Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016;39(4):1503-11.
doi: 10.1159/000447853. Epub 2016 Sep 12.

Cardiac-Specific Overexpression of miR-222 Induces Heart Failure and Inhibits Autophagy in Mice

Affiliations
Free article

Cardiac-Specific Overexpression of miR-222 Induces Heart Failure and Inhibits Autophagy in Mice

Ming Su et al. Cell Physiol Biochem. 2016.
Free article

Abstract

Background: MicroRNAs play a crucial role in the regulation of pathological cardiac remodeling and heart failure. Previously, we found that overexpression of miR-221 induces heart failure in mice. The miR-222 and miR-221 share the same gene cluster, however, the role of miR-222 in the regulation of cardiac function remained ill-defined.

Methods and results: Transgenic mice with cardiac-specific expression of miR-222 (Tg-miR-222) mice were generated. The Tg-miR-222 mice developed significantly enlarged hearts at 4 weeks of age. Transthoracic echocardiograph data indicated that the hearts of Tg-miR-222 mice exhibited an increased left ventricular end-diastolic internal diameter and decreased fractional shortening. We observed that the LC3-II in Tg-miR-222 mice was decreased accompanied with the upregulation of p62, indicating the autophagy inhibition in the hearts of Tg-miR-222 mice. The mTOR pathway, a negative regulator of autophagy, was activated in the hearts of Tg-miR-222 mice. The expression of p27 was downregulated by miR-222 overexpression.

Conclusion: Our data indicate that miR-222 overexpression induces heart failure in mice. The downregulation of p27 and the activation of mTOR pathway may be involved in miR-222-induced heart failure and autophagy inhibition. Thus, targeting miR-222 expression may be a therapeutic strategy against pathological cardiac remodeling.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources