Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Apr 7:3:e857.
doi: 10.7717/peerj.857. eCollection 2015.

A specimen-level phylogenetic analysis and taxonomic revision of Diplodocidae (Dinosauria, Sauropoda)

Affiliations

A specimen-level phylogenetic analysis and taxonomic revision of Diplodocidae (Dinosauria, Sauropoda)

Emanuel Tschopp et al. PeerJ. .

Abstract

Diplodocidae are among the best known sauropod dinosaurs. Several species were described in the late 1800s or early 1900s from the Morrison Formation of North America. Since then, numerous additional specimens were recovered in the USA, Tanzania, Portugal, and Argentina, as well as possibly Spain, England, Georgia, Zimbabwe, and Asia. To date, the clade includes about 12 to 15 nominal species, some of them with questionable taxonomic status (e.g., 'Diplodocus' hayi or Dyslocosaurus polyonychius), and ranging in age from Late Jurassic to Early Cretaceous. However, intrageneric relationships of the iconic, multi-species genera Apatosaurus and Diplodocus are still poorly known. The way to resolve this issue is a specimen-based phylogenetic analysis, which has been previously implemented for Apatosaurus, but is here performed for the first time for the entire clade of Diplodocidae. The analysis includes 81 operational taxonomic units, 49 of which belong to Diplodocidae. The set of OTUs includes all name-bearing type specimens previously proposed to belong to Diplodocidae, alongside a set of relatively complete referred specimens, which increase the amount of anatomically overlapping material. Non-diplodocid outgroups were selected to test the affinities of potential diplodocid specimens that have subsequently been suggested to belong outside the clade. The specimens were scored for 477 morphological characters, representing one of the most extensive phylogenetic analyses of sauropod dinosaurs. Character states were figured and tables given in the case of numerical characters. The resulting cladogram recovers the classical arrangement of diplodocid relationships. Two numerical approaches were used to increase reproducibility in our taxonomic delimitation of species and genera. This resulted in the proposal that some species previously included in well-known genera like Apatosaurus and Diplodocus are generically distinct. Of particular note is that the famous genus Brontosaurus is considered valid by our quantitative approach. Furthermore, "Diplodocus" hayi represents a unique genus, which will herein be called Galeamopus gen. nov. On the other hand, these numerical approaches imply synonymization of "Dinheirosaurus" from the Late Jurassic of Portugal with the Morrison Formation genus Supersaurus. Our use of a specimen-, rather than species-based approach increases knowledge of intraspecific and intrageneric variation in diplodocids, and the study demonstrates how specimen-based phylogenetic analysis is a valuable tool in sauropod taxonomy, and potentially in paleontology and taxonomy as a whole.

Keywords: Diplodocidae; New genus; Numerical taxonomy; Sauropod dinosaurs; Specimen-based phylogeny.

PubMed Disclaimer

Conflict of interest statement

The authors declare there are no competing interests.

Figures

Figure 1
Figure 1. Sauropod skulls.
Skulls of Mamenchisaurus youngi (A; modified from Ouyang & Ye, 2002), Camarasaurus sp. USNM 13786 (B) Giraffatitan brancai (C; modified from Janensch, 1935), Diplodocus sp. CM 11161 (D) and Galeamopus sp. SMA 0011 (E) in lateral view, illustrating the states of the characters 1, 5, 13, 14, 15, 19, 20, 21, 37, 38, 39, 45, 46, 47, 55, 113. Not to scale.
Figure 2
Figure 2. Anterior portions of sauropod premaxillae.
Anterior portions of premaxillae of Camarasaurus (A; modified from Madsen, McIntosh & Berman, 1995) and Galeamopus sp. SMA 0011 (B) in anterodorsal view, illustrating the states of characters 2 and 3. Not to scale.
Figure 3
Figure 3. Sauropod skulls.
Skulls (A, C–E) or maxilla (B) of Camarasaurus sp. SMA 0002 (A) Dicraeosaurus hansemanni MB.R.2336 (B) Kaatedocus siberi SMA 0004 (C) Galeamopus sp. SMA 0011 (D) and Diplodocus sp. CM 11161 (E) in anterolateral view, illustrating the states of the characters 6, 9, 10, 11, 12, 16, 17, 48. Not to scale.
Figure 4
Figure 4. Sauropod premaxillae.
Premaxillae of Suuwassea emilieae ANS 21122 (A) Dicraeosaurus hansemanni MB.R.2337 (B) and Galeamopus sp. USNM 2673 (C, left element reversed) in lateral view, illustrating the states of character 7. Not to scale.
Figure 5
Figure 5. Sauropod skulls.
Skulls of Camarasaurus (A; modified from Wilson & Sereno, 1998), Limaysaurus tessonei MUCPv-205 (B; photo by J Whitlock), Dicraeosaurus hansemanni MB.R.2379 (C) Kaatedocus siberi SMA 0004 (D) and Diplodocus sp. CM 11161 (E) in dorsal view, illustrating the states of the characters 8, 26, 29, 30, 34, 35, 36, 66. Not to scale.
Figure 6
Figure 6. Skull roof of Diplodocus sp. CM 11161 (A; based on Wilson & Sereno, 1998) and Limaysaurus tessonei MUCPv-205 (B; based on Calvo & Salgado, 1995) in dorsal view.
Note the anteromedial hook in the prefrontal of CM 11161 (A; C23-1), and the differently shaped frontal-nasal suture (straight to anteriorly bowed in A, C28-0; bowed posteriorly in B, C28-1). Abb.: f, frontal; na, nasal; pf, prefrontal. Scaled to the same skull roof length.
Figure 7
Figure 7. Left (F, H–K) and right (A–E, G) diplodocoid frontals in dorsal view, anterior to the top.
(A–E) shows elements with an anteriorly restricted posterior process of the prefrontal (C24-0), (F–K) have elongated posterior processes (C24-1). Additional states are illustrated from the characters 25, 31, 33. Frontals figured in strict perpendicular view, and scaled to the same anteroposterior length.
Figure 8
Figure 8. Left jugal of Diplodocus USNM 2672 in lateral view.
Note the large contribution of the jugal to the antorbital fenestra (C40-1), the narrow and elongate posteroventral process (C42-1), the dorsal process of the jugal (C43-0), and the anterior spur (C44-1). Abb.: aof, antorbital fenestra; j, jugal; la, lacrimal; ltf, laterotemporal fenestra; m, maxilla; o, orbit; po, postorbital; qj, quadratojugal.
Figure 9
Figure 9. Eusauropod skulls.
Skulls of Shunosaurus lii ZDM 65430 (A; modified from Chatterjee & Zheng, 2002) and Diplodocus sp. CM 11161 (B) in ventral view. Note the anteriorly displaced position of the ectopterygoid ramus of the pterygoid, and the ectopterygoid itself, in Diplodocus (B; C41-1 and C102-1), as well as the vomer that articulates with the premaxilla in Shunosaurus (A; C103-0), but with the maxilla in Diplodocus (B; C103-1). Abb.: aof, antorbital fenestra; bo, basioccipital; bpr, basipterygoid process; bt, basal tuber; ep, ectopterygoid; er, ectopterygoid ramus; j, jugal; m, maxilla; pa, palate; pm, premaxilla; popr, paroccipital process; pt, pterygoid; qj, quadratojugal; v, vomer. Pictures scaled to the same skull length.
Figure 10
Figure 10. Articular surfaces of neosauropod quadrates.
Quadrate articular surface shapes of Camarasaurus sp. SMA 0002 (A, quadrangular, C49-0), Suuwassea emilieae ANS 21122 (B, roughly triangular, C49-1), and Nigersaurus taqueti MNN GAD512-7 (C, crescent-shaped, C49-2). Figures of Suuwassea and Nigersaurus traced from Harris (2006a) and Sereno et al. (2007), respectively.
Figure 11
Figure 11. Neosauropod quadrates.
Quadrates of Camarasaurus sp. SMA 0002 (A) and Diplodocidae indet. SMA D27-7 (B) in posterior view, illustrating the transverse ridge (B, inlet; C50-1), and the deep (A; C51-0) versus shallow (B; C51-1) quadrate fossa. Not to scale.
Figure 12
Figure 12. Neosauropod quadrates.
Quadrates of Camarasaurus sp. SMA 0002 (A) and Diplodocidae indet. SMA D27-7 (B) in medial view, illustrating the second medial fossa (B; C52-1), the shape of the dorsal margin (C53, concave versus convex), and the stocky versus slender posterior ramus (C54). Scaled to the same height.
Figure 13
Figure 13. Temporal region in eusauropod skulls.
Squamosal and adjacent bones in Mamenchisaurus youngi (A; traced from Ouyang & Ye, 2002), Camarasaurus lentus CM 11338 (B; traced from Madsen, McIntosh & Berman, 1995), Amargasaurus cazaui MACN-N15 (C; traced from Salgado & Bonaparte, 1991), and Diplodocinae indet. CM 3452 (D; traced from a 3D model from L Witmer), in right (A, C) and left (B, D) lateral view; illustrating the states of the characters 56, 57, and 58. Abb.: po, postorbital; q, quadrate; qj, quadratojugal; sq, squamosal. Not to scale.
Figure 14
Figure 14. Sauropod skulls in posterior view.
Sauropod skulls of Spinophorosaurus nigerensis GCP-CV-4229 (A; traced from Knoll et al., 2012); Suuwassea emilieae ANS 21122 (B; traced from Harris, 2006a); Limaysaurus tessonei MUCPv-205 (C; after Calvo & Salgado, 1995); Kaatedocus siberi SMA 0004 (D); Apatosaurus louisae CM 11162, (E, reversed); Diplodocus sp. CM 11161 (F) in posterior view. Note the participation (C; C59-0) or exclusion (D; C59-1) of the parietal to the posttemporal fenestra; the straight (A; C62-0) or convex (D; C62-1) dorsal edge of the posterolateral process of the parietal; the outwards curve of the distal end of the posterolateral process of the parietal (B; C64-1); the distally expanded (C; C68-0) or straight paroccipital processes (F; C68-1); the dorsally vaulted supraoccipital (E; C73-0); and the narrow contribution of the basioccipital to the dorsal surface of the condyle (B; C78-1). Skulls scaled to the same occipital condyle width.
Figure 15
Figure 15. Skull of Kaatedocus siberi SMA 0004 in posterolateral view.
Note the transverse ridge of the parietal (arrow, C65-1). Abb.: anp, antotic process; bo, basioccipital; f, frontal; p, parietal; po, postorbital; popr, paroccipital process; ppfo, postparietal foramen; pra, proatlas; snc, sagittal nuchal crest; so, supraoccipital; stf, supratemporal fenestra.
Figure 16
Figure 16. Skull of Kaatedocus siberi SMA 0004 in posterior view.
Note the oblique ridge on paroccipital process (arrow, C67-1). Abb.: CV, cervical vertebrae; f, frontal; p, parietal; po, postorbital; popr; paroccipital process; ppfo, postparietal foramen; pra, proatlas; ptf, posttemporal fenestra; q, quadrate; qj, quadratojugal; so, supraoccipital; sq, squamosal; stf, supratemporal fenestra.
Figure 17
Figure 17. Flagellicaudatan braincases.
Braincase of Suuwassea emilieae ANS 21122 (A) and Tornieria africana MB.R.2386 (B) in right (A) and left (B) lateral view, illustrating the curved lateral end of the paroccipital process (A; C69-1), and the short (A; C79-0) and elongate basioccipital (B; C79-1). Abb.: anp, antotic process; bo, basioccipital; bpr, basipterygoid process; bt, basal tuber; cpr, crista prootica; f, frontal; os, orbitosphenoid; p, parietal; popr, paroccipital process. Scale bar = 5 cm.
Figure 18
Figure 18. Braincase of Diplodocus sp. CM 11161 (A) and Tornieria africana MB.R.2386 (B) in dorsal view.
Note the concave anterior margin of the supraoccipital in Diplodocus (A; C72-0), in contrast to the convex edge of Tornieria (B; C72-1). The left frontal of MB.R.2386 is lacking. Abb.: f, frontal; na, nasal; os, orbitosphenoid; p, parietal; pf, prefrontal; po, postorbital; popr, paroccipital process; so, supraoccipital; sq, squamosal; stf, supratemporal fenestra. Not to scale.
Figure 19
Figure 19. Flagellicaudatan skulls in posterior view.
Skulls of Diplodocus sp. CM 11161 (A) and Dicraeosaurus hansemanni MB.R.2379 (B) in posterior view, illustrating the development of the sagittal nuchal crest (C74), and the supraoccipital foramina (C75). Abb.: bo, basioccipital; ex, exoccipital; fm, foramen magnum; p, parietal; po, postorbital; popr, paroccipital process; ptf, posttemporal fenestra; so, supraoccipital; sq, squamosal. Skulls scaled to the same skull width.
Figure 20
Figure 20. Basal tubera and basisphenoid of Dicraeosaurus hansemanni MB.R.2379 in posteroventral (A), left lateral (B), and anterodorsal view (C).
Note the lateral expansion of the anteroventral end of the crista prootica (C76-1), the narrowly diverging, and elongate basipterygoid processes (C92-2 and C94-2, respectively), the deep slot-like cavity separating the bases of the processes (A, arrowhead; C95-1), and the groove on the dorsal surface of the parasphenoid rostrum (C; C99-1). Abb.: bt, basal tuber; bpr, basipterygoid process; cpr, crista prootica; psr, parasphenoid rostrum. Scale bar = 5 cm.
Figure 21
Figure 21. Neosauropod braincases.
Braincase of Camarasaurus sp. UUVP 4286 (A; modified from Madsen, McIntosh & Berman, 1995) and Tornieria africana MB.R.2386 (B) in a view perpendicular to the dorsal surface of the occipital condyle, illustrating the distinctly offset articular surface (arrow in A; C77-0), in contrast to the derived condition of diplodocoids (B; C77-1). Abb.: ex, exoccipital; f, frontal; fm, foramen magnum; oc, occipital condyle; os, orbitosphenoid; p, parietal; pf, prefrontal; popr, paroccipital process. Skulls scaled to same breadth of occipital condyle.
Figure 22
Figure 22. Braincase of Losillasaurus giganteus MCNV Lo-26 in posterolateral (A) and posterior (B) view.
Note the lateral basioccipital depression between the foramen magnum and the basal tubera (A; C80-1); the laterally curving distal ends of the basipterygoid processes (B; C97-1), as well as their distinct transverse expansion (B; 98-1). Abb.: bo, basioccipital; bpr, basipterygoid process; bt, basal tuber; ex, exoccipital; fm, foramen magnum; popr, paroccipital process; psr, parasphenoid rostrum; so, supraoccipital. Scale bar = 10 cm.
Figure 23
Figure 23. Hypothetical diplodocid basioccipital-basisphenoid complex in posteroventral view.
Note the locations of pits sometimes present in diplodocid specimens: between occipital condyle and basal tubera (C81-1), in the notch between basal tubera (C90-1), and on the basisphenoid, between the bases of the basipterygoid processes (termed ‘basipterygoid recess’ by Wilson, 2002; C91-1). Abb.: bo, basioccipital; bpr, basipterygoid process; bs, basisphenoid; bt, basal tuber; cpr, crista prootica; ex, exoccipital; popr, paroccipital process.
Figure 24
Figure 24. Neosauropod basal tubera.
Basal tubera of Camarasaurus grandis YPM 1905 (A; modified from Madsen, McIntosh & Berman, 1995), Suuwassea emilieae ANS 21122 (B), and Kaatedocus siberi SMA 0004 (C; photo by J Marinheiro) in posterior view. Note the globose (B; C82-0) compared to the box-like shape (C; C82-1) of the tubera, the transverse ridge on their posterior face (C; C86-1), and the ventrolateral (A; C89-0) in contrast to ventral orientation (C; C89-1). Abb.: bo, basioccipital; bpr, basipterygoid process; bs, basisphenoid; bt, basal tuber; ex, exoccipital; fm, foramen magnum; oc, occipital condyle; popr, paroccipital process. Pictures scaled to same distance between dorsal face of occipital condyle and basal tubera.
Figure 25
Figure 25. Diplodocimorph skulls in occipital view.
Skulls of Nigersaurus taqueti (A; modified from Schmitt, 2012) and Galeamopus sp. USNM 2673 (B) in occipital view. Note the reduced basal tubera in Nigersaurus (A; C84-1), and the convex (A; C 85-0), or concave (B; C85-2) posterior face of the tubera. Abb.: bpr, basipterygoid process; bt, basal tuber; cpr, crista prootica; fm, foramen magnum; oc, occipital condyle; popr, paroccipital process; so, supraoccipital. Skulls scaled to same occipital condyle height.
Figure 26
Figure 26. Diplodocid basioccipital-basispenoid complex.
Basioccipital-basispenoid complex of Apatosaurus louisae CM 11162 (A), Kaatedocus siberi SMA 0004 (B; traced from a photo by J Marinheiro), and Diplodocus sp. CM 11161 (C) in posteroventral view. Note the differing orientations of the longest axes of the basal tubera (B; C87-0; in contrast to C; C87-1), as well as the concave (A; C88-1) versus the straight to slightly convex anterior edge of the tubera (B; C88-0). Abb.: bo, basioccipital; bpr, basipterygoid process; bs, basisphenoid; bt, basal tuber; ex, exoccipital. Drawings not to scale.
Figure 27
Figure 27. Diplodocine basisphenoids.
Basisphenoid of Kaatedocus siberi SMA 0004 (A; traced from a photo by J Marinheiro), and Diplodocus sp. CM 11161 (B) in posteroventral view. Note the parallel proximal portion of the basipterygoid processes and the accompanying outwards curve in Kaatedocus (A; C96-1), in contrast to the straight processes of CM 11161 (B; C96-0). Abb.: bo, basioccipital; bpr, basipterygoid process; bs, basisphenoid; bt, basal tuber. Scaled to the same process length.
Figure 28
Figure 28. Flagellicaudatan braincases.
Braincases of Suuwassea emilieae ANS 21122 (A), and Tornieria africana MB.R.2386 (B; traced from Janensch, 1935) in anterior view. Note the unpaired optic foramen of Suuwassea (A; C100-1), in contrast to the paired foramen in Tornieria (B; C100-0). Abb.: anp, antotic process; bs, basisphenoid; can, crista antotica; cpr, crista prootica; ls, laterosphenoid; olf, olfactory foramen; opf, optic foramen; os, orbitosphenoid; popr, paroccipital process; pro, prootic. Scaled to the same width of the orbitosphenoids.
Figure 29
Figure 29. Pterygoid of Camarasaurus lentus DNM 28.
Left pterygoid of Camarasaurus lentus DNM 28 in medial view. Note the presence of a hook-like process at the articulation surface for the basipterygoid process (C101-1). Diplodocidae, on the other hand, only have shallow articular facets without hooks. Abb.: ap, anterior process; bph, basipterygoid hook; er, ectopterygoid ramus; qr, quadrate ramus. Picture traced from Madsen, McIntosh & Berman (1995). Scale bar = 10 cm.
Figure 30
Figure 30. Neosauropod dentaries.
Left dentary of Camarasaurus lentus DNM 28 (A; traced from Madsen, McIntosh & Berman, 1995), Dicraeosaurus hansemanni MB.R.2372 (B; traced from Janensch, 1935), and Nigersaurus taqueti MNN GAD512-10 (C; traced from Sereno et al., 2007) in lingual view. Note the chin-like ventral process in Dicraeosaurus (B; C104-1), the different shapes of the symphysis (C105-1 to 3), and the high elevation of the coronoid eminence in Camarasaurus (A; C108-0). Abb.: an, angular; d, dentary; sa, surangular; sym, symphysis; t, tooth. Scaled to the same anteromedial height of the dentary.
Figure 31
Figure 31. Diplodocimorph dentaries.
Left dentary of Dicraeosaurus hansemanni MB.R.2372 (A), and Nigersaurus taqueti MNN GAD512-10 (B; traced from Sereno et al., 2007) in dorsal view. Note the labial tubercle in Dicraeosaurus (A; C106-1), the dentigerous portion that expands laterally in Nigersaurus (B; C107-1), and the anterolaterally displaced tooth row, compared to the usual curvature in both taxa (C112-1). Abb.: sym, symphysis; t, tooth. Scaled to the same anteroposterior length.
Figure 32
Figure 32. Neosauropod lower jaw.
Left lower jaw of Camarasaurus lentus CM 11338 (A; modified from Madsen, McIntosh & Berman, 1995), Nigersaurus taqueti MNN GAD-512 (B; traced from Sereno et al., 2007), and Galeamopus sp. SMA 0011 (C) in lateral view. Note the surangular foramen in A and B (C109-1), the external mandibular fenestra in Nigersaurus (B; C110-0), the strongly overlapping teeth of Camarasaurus (A; C120-0) in contrast to the more widely spaced teeth of diplodocids (C; C120-1), and the anterior inclination of the diplodocid teeth in respect to the jaw axis (C; C122-1). Abb.: an, angular; d, dentary; emf, external mandibular fenestra; sa, surangular; saf, surangular foramen; t, tooth. Scaled to the same mandibular length.
Figure 33
Figure 33. Eusauropod teeth.
Tooth of Omeisaurus tianfuensis ZDM T5705 (A; traced from He, Li & Cai, 1988), Camarasaurus sp. SMA 0002 (B), and Diplodocinae indet. CM 3452 (C) in lingual view. Note the V-shaped wear facets in Camarasaurus (B; C117-0), in contrast to the single, planar facet in diplodocids (C; C117-1), the longitudinal grooves in Omeisaurus and Camarasaurus (A, B; C123-1), and the marginal tooth denticles in Omeisaurus (A; C125-0). Abb.: ato, anterior tooth; dt, denticles; pto, posterior tooth; tc, tooth crown; tr, tooth root; wf, wear facet. Teeth scaled to the same crown length.
Figure 34
Figure 34. Tooth of Nigersaurus in labial (A) and lingual (B) view.
Note the paired, planar wear facets typical for Rebbachisauridae (C117-1; C118-0). Abb.: wf, wear facet. Figure traced from Whitlock (2011b).
Figure 35
Figure 35. Neosauropod tooth cross-sections.
Tooth cross-section of Camarasaurus sp. AMNH 5764 (A), and Demandasaurus darwini MDS-RVII,438 (B; traced from Torcida Fernández-Baldor et al., 2011). Note the D-shaped crown of Camarasaurus (A; C121-0) in contrast with the rounded cross-section of diplodocoids (B; C121-0), and the asymmetric disposition of the enamel typical for rebbachisaurids (B; C124-1). The camarasaur tooth has the same specimen number as the Amphicoelias altus holotype, but does not belong to the same individual (see text). Abb.: de, dentin; en, enamel. Scaled to the same mesiodistal width.
Figure 36
Figure 36. Mid-cervical vertebra (CV ?10) of Galeamopus sp. SMA 0011 in right lateral view.
Note the pleurocoel typical for advanced eusauropods (C129-1), but highly subdivided (C171-2), the elongate posteroventral fossa present in diplodocines (C131-1), the anteriorly restricted pcdl (C135-0), in contrast to the more posteriorly reaching pcdl of Apatosaurus, the dorsally excavated parapophysis (C173-0), the large foramen connecting the pocdf and the spof (C191-1), and the accessory laminae connecting the podl and the sprl (C197-1), and the pcdl and the podl (C199-1). Abb.: apf, anterior pneumatic fossa; di, diapophysis; pap, parapophysis; pcdl, posterior centrodiapophyseal lamina; pocdf, postzygapophyseal centrodiapophyseal fossa; podl, postzygodiapophyseal lamina; poz, postzygapophysis; prdl, prezygodiapophyseal lamina; pre, pre-epipophysis; prz, prezygapophysis; pvf, posteroventral flange; sdf, spinodiapophyseal fossa; spof, spinopostzygapophyseal fossa; spol, spinopostzygapophyseal lamina; sprl, spinoprezygapophyseal lamina; tpol, interpostzygapophyseal lamina.
Figure 37
Figure 37. Cross-section of neosauropod cervical vertebrae.
Mid- to posterior cervical vertebrae cross-section of Supersaurus vivianae WDC DMJ-021 (A; modified from Lovelace, Hartman & Wahl, 2007), and Brachiosaurus sp. BYU 12866 (B; modified from Wedel, 2009). Sections at base of diapophysis. Note the different internal pneumatic structure, with few but large cavities in Supersaurus (A; C130-1), in contrast to the many irregularly small fossa typical for titanosauriforms (B; C130-2). The differences shown here in cervical vertebrae apply as well for dorsal vertebrae (C228). Pictures scaled to the same centrum height. Abb: di, diapophysis; nc, neural canal; ns, neural spine; pl, pleurocoel.
Figure 38
Figure 38. Flagellicaudatan mid- to posterior cervical vertebrae.
Mid- to posterior cervical vertebrae of Dicraeosaurus hansemanni MB.R.4886 (A; photo by J Harris), Kaatedocus siberi SMA 0004 (B), and Barosaurus lentus YPM 429 (C) in ventral view (anterior to the top). Note the different developments of the ventral keels (prominent in Dicraeosaurus, A, C132-0; shallow, single in Kaatedocus, B, C132-1 and 175-0; double in Barosaurus, C, C175-1), the ventral sulcus typical for diplodocines (B, C; C133-1), the pneumatic foramina accompanying the ventral keel in Dicraeosaurus (A; C176-1), the posteroventral flanges (C179-1), and the numerous accessory laminae subdividing the prezygapophyseal centrodiapophyseal fossa in Barosaurus (C; C184-2). Vertebrae scaled to same centrum length. Abb: acdl, anterior centrodiapophyseal lamina; CR, cervical rib; di, diapophysis; pap, parapophysis; pcdl, posterior centrodiapophyseal lamina; podl, postzygodiapophyseal lamina; poz, postzygapophysis, prdl, prezygodiapophyseal lamina; prz, prezygapophysis; pvf, posteroventral flange.
Figure 39
Figure 39. Diplodocid mid- to posterior cervical vertebrae.
Mid- to posterior cervical vertebrae of Apatosaurus ajax YPM 1860 (A; traced from a photo by M Taylor), and Kaatedocus siberi SMA 0004 (B; CV 13, traced from Tschopp & Mateus, 2013b) in dorsal view (anterior to the top). Note the triangular posterior projection on the diapophysis in Kaatedocus (B; C134-1), the transversely compressed (B; C142-0) in contrast to rounded (A; C142-1) neural spine summits, the transverse sulcus accompanying the prezygapophyseal facet posteriorly in Kaatedocus (B; C195-1), the anterior bulge of the sprl, just below the spine summit, characterizing most diplodocines (B; C196-1), and the median tubercle visible in Apatosaurus (A; C210-1). Abb.: bns, bifid neural spine; CR, cervical rib; di, diapophysis; epi, epipophysis; pcdl, posterior centrodiapophyseal lamina; podl, postzygodiapophyseal lamina; prdl, prezygodiapophyseal lamina; prz, prezygapophysis; spol, spinopostzygapophyseal lamina; sprl, spinoprezygapophyseal lamina; tpol, interpostzygapophyseal lamina; tprl, interprezygapophyseal lamina. Vertebrae scaled to same total length.
Figure 40
Figure 40. Cervical vertebra 11 of diplodocids.
Cervical vertebra 11 of Apatosaurus louisae CM 3018 (A; modified from Gilmore, 1936) and Diplodocus carnegii CM 84 (B; modified from Hatcher, 1901) in left (A) and right (B) lateral view. Note the posteriorly extending posterior centrodiapophyseal lamina in Apatosaurus (A; C135-1), the anteriorly restricted pneumatic foramen typical for most apatosaurs (A; C172-1), the pre-epipophysis (A; C181-1), the subdivided prezygapophyseal centrodiapophyseal fossa, characterizing A. louisae (A; C184-1), the posteriorly expanded interpostzygapophyseal lamina of Diplodocus (B; C190-1), the posteriorly restricted prezygapophysis of A. louisae (A; C194-1), compared to the state in Diplodocus, where it reaches the anterior edge of the condyle (B; C194-0), the vertical accessory spinal lamina marking Diplodocus (B; C203-1), the different positions of the cervical ribs (ventrally projecting, A, C216-1; or level with centrum, B, C216-0), and the absence (A; C219-1) or presence (B; C219-0) of the anterior process of the cervical rib. Vertebrae scaled to same posterior cotyle height. Abb: apf, anterior pneumatic fossa; CR, cervical ribs; podl, postzygodiapophyseal lamina; poz, postzygapophysis; ppf, posterior pneumatic fossa; prdl, prezygodiapophyseal lamina; pvfo, posteroventral fossa; spol, spinopostzygapophyseal lamina; sprl, spinoprezygapophyseal lamina.
Figure 41
Figure 41. Cervical vertebra 6 of neosauropods.
Cervical vertebra 6 of Australodocus bohetii MB.R.2455 (A) and Galeamopus sp. SMA 0011 (B) in left (A) and right (B) lateral view. Note the short second pcdl in Australodocus (A; C136-1), the foramen piercing the podl (A; C137-1), the projection formed by the epipophysis (B; C138-1), the low (A; C164-0), and high (B; C164-1) neural spines, and the cervical rib, which is slightly longer than the centrum in Galeamopus (B; C215-1). Abb.: acdl, anterior centrodiapophyseal lamina; apf, anterior pneumatic fossa; cpol, centropostzygapophyseal lamina; cprl, centroprezygapophyseal lamina; CR, cervical rib; naf, neural arch foramen; pcdl, posterior centrodiapophyseal lamina; podl, postzygodiapophyseal lamina; poz, postzygapophysis; ppf, posterior pneumatic fossa; prz, prezygapophysis; spol, spinopostzygapophyseal lamina; sprl, spinoprezygapophyseal lamina; tpol, interpostzygapophyseal lamina. Vertebrae scaled to the same centrum length.
Figure 42
Figure 42. Diplodocine mid- to posterior cervical vertebrae.
Mid- to posterior cervical vertebrae of Barosaurus lentus YPM 429 (A) and Diplodocus carnegii CM 84 (B) in left posterolateral (A) and left dorsolateral view (B). Note the differently pneumatized epipophyses (C139-1), the transversely compressed epipophysis (B; C202-1), and the horizontal ridge below the neural spine summit in Diplodocus (B; C205-1). The cervical vertebra of B. lentus is partly covered by matrix and plaster. Abb.: apf, anterior pneumatic fossa; CR, cervical rib; pap, parapophysis; pcdl, posterior centrodiapophyseal lamina; ppf, posterior pneumatic fossa; prdl, prezygodiapophyseal lamina; prz, prezygapophysis; pvf, posteroventral flange; pvfo, posteroventral fossa; spol, spinopostzygapophyseal lamina; sprl, spinoprezygapophyseal lamina. Vertebrae scaled to the same posterior cotyle height.
Figure 43
Figure 43. Cervical vertebra 5 of flagellicaudatans.
Cervical vertebra 5 of Suuwassea emilieae ANS 21122 (A) and Kaatedocus siberi SMA 0004 (B; modified from Tschopp & Mateus, 2013b) in anterior view. Note the transversely widening (A; C141-1) instead of straight (B; C141-0) neural spine, and the presence of a prespinal lamina in Kaatedocus (B; C161-1). The neural spine of Suuwassea (A) is not bifurcated, but broken (as indicated by the dashed line). Abb.: cprl, centroprezygapophyseal lamina; pap, parapophysis; poz, postzygapophysis; prdl, prezygodiapophyseal lamina; prz, prezygapophysis; sprl, spinoprezygapophyseal lamina. Vertebrae scaled to the same anterior condyle length.
Figure 44
Figure 44. Diplodocine proatlases.
Proatlas of ?Kaatedocus SMA P29-1 (A) and Galeamopus sp. SMA 0011 (B) in medial view, illustrating the broad (A; C143-0) and narrow distal tips (B; C143-1). Abb.: pas, proximal articular surface. Scaled to the same articular surface height.
Figure 45
Figure 45. Neosauropod atlantes.
Atlas of Camarasaurus sp. UUVP 10070 (A; modified from Madsen, McIntosh & Berman, 1995), and Galeamopus sp. AMNH 969 (B) in posterior (left) and right lateral view (right, A shows left side reversed). Note the distinct anteroventral lip characterizing diplodocids (B; C144-1), and the foramen between the posterior ventrolateral processes in AMNH 969 (B; C145-1). Abb.: ncs, neurocentral synchondrosis; pvlp, posterior ventrolateral process. Scaled to the same centrum height.
Figure 46
Figure 46. Diplodocid atlantal neurapophyses.
Neurapophyses of Apatosaurus louisae CM 3018 (A; modified from Gilmore, 1936), Kaatedocus siberi SMA 0004 (B; traced from 3D model provided by G Dzemski), and Galeamopus sp. SMA 0011 (C) in lateral (A; left side reversed), and dorsolateral view (B, C). Note the weak (B; C146-0) in contrast to well-developed medial process (C; C146-1), the subtriangular lateral spur in Galeamopus (C; C147-1), the different shapes of the distal process (tapering, B, C148-0; wide, C, C148-1), and the foramen characterizing A. louisae (A; C149-1). Abb.: dip, distal process; ncs, neurocentral synchondrosis. Scaled to the same anteroposterior length.
Figure 47
Figure 47. Axis of Diplodocus carnegii CM 84 in posterolateral view.
Note the pneumatic slot-like fossa posterior to the parapophysis (C150-1), and the presence of a postspinal lamina (C152-1). Abb.: at, atlas; CV 3, cervical vertebra 3; pap, parapophysis; pl, pleurocoel; poz, postzygapophysis; prdl, prezygodiapophyseal lamina; prsl, prespinal lamina; spol, spinopostzygapophyseal lamina.
Figure 48
Figure 48. Axis of Galeamopus sp. AMNH 969 in dorsal (top), right lateral (bottom left), and anterior (bottom right) view.
Note the anteriorly expanded prespinal lamina (C151-1), and the anteriorly restricted neural spine summit (C153-2). Abb.: di, diapophysis; epi, epipophysis; pap, parapophysis; pcdl, posterior centrodiapophyseal lamina; pl, pleurocoel; poz, postzygapophysis; prsl, prespinal lamina; prz, prezygapophysis. Scale bar = 10 cm.
Figure 49
Figure 49. Cervical vertebra 4 of flagellicaudatans.
Cervical vertebra 4 of Dicraeosaurus hansemanni MB.R.4886 (A) and Galeamopus sp. SMA 0011 (B) in right lateral view. Note the differently inclined posterior border of the anterior condyle (A, C156-0; B, C156-1), the subdivision of the pleurocoel in Galeamopus (B; C157-1), which is absent in anterior cervical vertebrae of Dicraeosaurus (A; C157-0), the anterior pneumatic fossa that extends onto the parapophysis (B; C158-0), the presence of a prespinal lamina in Galeamopus (B; C161-1), and the posteriorly projecting spur on the dorsal edge of the posterior process of the cervical rib of Dicraeosaurus (A; C217-1). Abb.: acdl, anterior centrodiapophyseal lamina; apf, anterior pneumatic fossa; cprl, centroprezygapophyseal lamina; CR 3, cervical rib 3; CV 3, cervical vertebra 3; epi, epipophysis; naf, neural arch foramen; pl, pleurocoel; podl, postzygodiapophyseal lamina; poz, postzygapophysis; ppf, posterior pneumatic fossa; prdl, prezygodiapophyseal lamina; prz, prezygapophysis; spol, spinopostzygapophyseal lamina; sprl, spinoprezygapophyseal lamina. Vertebrae scaled to the same cotyle height.
Figure 50
Figure 50. Cervical vertebra 6 of flagellicaudatans.
Cervical vertebra 6 of Dicraeosaurus hansemanni MB.R.4886 (A) and Galeamopus sp. SMA 0011 (B) in right lateral view. Note the large, rounded pneumatic foramen marking the anterior end of the posterior pneumatic fossa in Galeamopus (B; C162-1), the elongate foramen in the neural spine (B; C165-1), the right (A; C170-1), or acute angles (B; C170-0) between the spinopostzygapophyseal and the postzygodiapophyseal laminae, and the vertical (A; C218-0) or posteriorly inclined tuberculum (B; C218-1). Abb.: acdl, anterior centrodiapophyseal lamina; apf, anterior pneumatic fossa; cprl, centroprezygapophyseal lamina; CR, cervical rib; CV 5, cervical vertebra 5; pap, parapophysis; pl, pleurocoel; poz, postzygapophysis; ppf, posterior pneumatic fossa; prz, prezygapophysis; pvf, posteroventral flanges; sprl, spinoprezygapophyseal lamina. Scaled to the same cotyle height.
Figure 51
Figure 51. Diplodocine mid-cervical vertebrae.
Mid-cervical vertebrae of Kaatedocus siberi SMA 0004 (A; CV 10, modified from Tschopp & Mateus, 2013b) and Diplodocus carnegii CM 84 (B; CV 8) in right lateral (A) and left laterodorsal view (B). Note the reduced spinoprezygapophyseal lamina (B; C163-1), the pre-epipophysis (C181-1), which is anteriorly expanded in K. siberi (A; C167-1), the distinct fossa posterolaterally to the prezygapophysis (A; C183-1), which is absent in CM 84 (B; C183-0), and the short cervical ribs (B; 214-1). Abb.: apf, anterior pneumatic fossa; cprl, centroprezygapophyseal lamina; CR, cervical rib; CV 7, cervical vertebra 7; podl, postzygodiapophyseal lamina; poz, postzygapophysis; ppf, posterior pneumatic fossa; prz, prezygapophysis; pvf, posteroventral flanges; spol, spinopostzygapophyseal lamina; sprl, spinoprezygapophyseal lamina. Not to scale.
Figure 52
Figure 52. Cervical vertebra 8 of flagellicaudatans.
Cervical vertebra 8 of Dicraeosaurus hansemanni MB.R.4886 (A) and Kaatedocus siberi SMA 0004 (B) in right lateral view. Note the different inclinations of the neural spine (C169), and the small tuberosity marking the anterodorsal corner of the centrum in Kaatedocus (B; C178-1). Abb.: cpol, centropostzygapophyseal lamina; CV 7, cervical vertebra 7; epi, epipophysis; mt, median tubercle; podl, postzygodiapophyseal lamina; poz, postzygapophysis; pre, pre-epipophysis; prz, prezygapophysis; pvf, posteroventral flanges; spol, spinopostzygapophyseal lamina; sprl, spinoprezygapophyseal lamina. Scaled to the same cotyle height.
Figure 53
Figure 53. Cervical vertebra 14 of “Dinheirosaurus” lourinhanensis ML 414 in lateroventral view.
Note the particular ventral morphology with posteriorly located paired pneumatic foramina (C176-1), lateral grooves posterior to the parapophyses (C177-1), a posteriorly restricted ventral keel (C193-1), and the elongated lateral spinal cavity (C204-1). Abb.: acdl, anterior centrodiapophyseal lamina; CR, cervical rib; pap, parapophysis; poz, postzygapophysis; prz, prezygapophysis; pvf, posteroventral flanges; pvfo, posteroventral fossa.
Figure 54
Figure 54. Cervical vertebra 11 of eusauropods.
Cervical vertebra 11 of Jobaria tiguidensis MNN TIG (A; traced from photo by J Carballido), Camarasaurus supremus AMNH 5671 (B; based on Osborn & Mook, 1921), and Diplodocus carnegii CM 84 (C; based on Hatcher, 1901) in anterior view. Note the straight (A; C180-0), in contrast to convex prezygapophyseal facet (C; C180-1), and the different morphologies of the centroprezygapophyseal lamina (single, A, C185-0; divided, and connecting to tprl, B, C185-1; divided with both branches connecting to prezygapophysis, C, C185-2). Abb.: di, diapophysis; nc, neural canal; pap, parapophysis; podl, postzygodiapophyseal lamina; poz, postzygapophysis; prdl, prezygodiapophyseal lamina; prz, prezygapophysis; spol, spinopostzygapophyseal lamina; sprl, spinoprezygapophyseal lamina. Scaled to the same condyle height.
Figure 55
Figure 55. Cervical vertebra 12 of Kaatedocus siberi SMA 0004 in lateral anterodorsal view.
Note the laterally tilted anterior portion of the sprl (C182-1), the lateral fossa marking the anterior end of the spinodiapophyseal fossa (C183-1), and the transverse sulcus accompanying the prezygapophyseal facet posteriorly (C195-1). Abb.: cpol, centropostzygapophyseal lamina; CR, cervical rib; epi, epipophysis; poz, postzygapophysis; prdl, prezygodiapophyseal lamina; pre, pre-epipophysis; prz, prezygapophysis; spol, spinopostzygapophyseal lamina; sprl, spinoprezygapophyseal lamina. 3D digital model provided by G Dzemski.
Figure 56
Figure 56. Cervical vertebra 12 of diplodocids.
Cervical vertebra 12 of Apatosaurus louisae CM 3018 (A; based on Gilmore, 1936), and Kaatedocus siberi SMA 0004 (B; based on Tschopp & Mateus, 2013b) in posterior view. Note the separated (A; C186-1) or connected pcdl and podl (B; C186-0), the divided (A; C189-1) or single cpol (B; C189-0), the accessory lamina in the postzygapophyseal centrodiapophyseal fossa (B; C198-1), and the tpol that connects directly (B; C201-0) or indirectly with the neural canal roof (A; C201-1). Abb.: CR, cervical rib; pcdl, posterior centrodiapophyseal lamina; podl, postzygodiapophyseal lamina; poz, postzygapophysis; prdl, prezygodiapophyseal lamina; spol, spinopostzygapophyseal lamina; tpol, interpostzygapophyseal lamina. Scaled to the same posterior cotyle height.
Figure 57
Figure 57. Posterior cervical vertebra of Barosaurus lentus YPM 429 in right lateral view.
Note the short horizontal accessory lamina within the spinodiapophyseal fossa (C187-1), the anteriorly bifurcated posterior centrodiapophyseal lamina (C188-1), and the anteriorly restricted postzygapophyses (C200-1). Abb.: cpol, centropostzygapophyseal lamina; pap, parapophysis; podl, postzygodiapophyseal lamina; prdl, prezygodiapophyseal lamina; prz, prezygapophysis; pvf, posteroventral flanges; spol, spinopostzygapophyseal lamina; sprl, spinoprezygapophyseal lamina. Scale bar = 10 cm.
Figure 58
Figure 58. Diplodocine posterior cervical vertebrae.
Posterior cervical vertebrae of Kaatedocus siberi SMA 0004 (A), and Barosaurus lentus YPM 429 (B) in dorsal view. Note the dorsoventral ridge on the medial side of the metapophysis (A; C206-1) and the anterior projection lateral to the prezygapophyseal facet (B; C213-1). Abb.: di, diapophysis; epi, epipophysis; podl, postzygodiapophyseal lamina; prdl, prezygodiapophyseal lamina; prz, prezygapophysis; spol, spinopostzygapophyseal lamina; sprl, spinoprezygapophyseal lamina. Scaled to the same total length.
Figure 59
Figure 59. Dorsal vertebra 1 of diplodocids.
Dorsal vertebra 1 of Apatosaurus louisae CM 3018 (A; modified from Gilmore, 1936), and Diplodocus carnegii CM 84 (B; modified from Hatcher, 1901) in left and right lateral view, respectively. Note the roughened prdl (B; C208-1), and the different location of the pleurocoels (C240). Abb.: cpol, centropostzygapophyseal lamina; di, diapophysis; pap, parapophysis; pcdl; posterior centrodiapophyseal lamina; pl, pleurocoel; poz, postzygapophysis; spol, spinopostzygapophyseal lamina. Scaled to same posterior cotyle height.
Figure 60
Figure 60. Flagellicaudatan anterior dorsal vertebrae.
Anterior dorsal vertebrae of Suuwassea emilieae ANS 21122 (A), Brontosaurus parvus UW 15556 (B; modified from Gilmore, 1936), and Apatosaurus ajax YPM 1860 (C) in anterior view. Note the prespinal lamina (A and C; C209-1), the diverging (B; C211-0) or parallel neural spines (A; C211-1), the wide (C; C212-0) or narrow (A; C212-1) distance between the spine tops, and the ridge on the medial side of the neural spine (C; C245-1). Abb.: di, diapophysis; nc, neural canal; pap, parapophysis; pcdl, posterior centrodiapophyseal lamina; prdl, prezygodiapophyseal lamina; prpl, prezygoparapophyseal lamina; prz, prezygapophysis; sprl, spinoprezygapophyseal lamina; tprl, interprezygapophyseal lamina. Scaled to same anterior condyle height.
Figure 61
Figure 61. Apatosaurine posterior cervical ribs.
Posterior cervical ribs of Brontosaurus parvus UW 15556 (A; after Gilmore, 1936) and Apatosaurus louisae CM 3018 (B; after Gilmore, 1936) in right lateral view (B inverted). Note the short, reduced anterior projection (A; C220-1), the pointed anterior process (A; C221-1), the ventrolateral process (B; C222-1), and the downwards curving posterior process (A; C223-1). Abb.: cap, capitulum; tub, tuberculum. Scaled to same length.
Figure 62
Figure 62. Dorsal vertebra 3 of eusauropods.
Dorsal vertebra 3 of Shunosaurus lii ZDM T5401 (A; modified from Zhang, 1988), and Brontosaurus parvus UW 15556 (B; modified from Gilmore, 1936) in left (A) and right (B) lateral view. Note the slightly concave lateral surface of the centrum in Shunosaurus (A; C227-0), in contrast to the well-defined pneumatopore in UW 15556 (B; C227-1), and the different locations of the parapophyses (C246). Abb.: cpol, centropostzygapophyseal lamina; di, diapophysis; pcdl, posterior centrodiapophyseal lamina; poz, postzygapophysis. Scaled to the same total vertebral height.
Figure 63
Figure 63. Diplodocoid posterior dorsal vertebrae.
Posterior dorsal vertebrae of Haplocanthosaurus priscus CM 572 (A; modified from Hatcher, 1903), Demandasaurus darwini MDS-RVII 798 (B; modified from Torcida Fernández-Baldor et al., 2011), and Apatosaurus louisae CM 3018 (C; modified from Gilmore, 1936) in posterior view. Note the paired pneumatic foramen dorsolateral to the neural canal in Demandasaurus (B; C229-1), the different orientations of the diapophyses in Haplocanthosaurus (A; C230-1) and Apatosaurus (C; C230-0), the single lamina that supports the hyposphene from below (C; C238-0), the dorsal spur on the tip of the transverse process (A; C264-1), the small triangular lateral projections at the spine top (A; C267-1), or their absence (C; C267-0), the rhomboid (C; C276-0) in contrast to laminar (B; C276-1) hyposphene, and the ventrally forked spol (B; C277-1). Abb.: cpol, centropostzygapophyseal lamina; nc, neural canal; pap, parapophysis; posl, postspinal lamina; poz, postzygapophysis; spdl, spinodiapophyseal lamina; spol, spinopostzygapophyseal lamina. Scaled to same posterior centrum height.
Figure 64
Figure 64. Dorsal vertebra 8 of neosauropods.
Dorsal vertebra 8 of Camarasaurus supremus AMNH 5760 (A; traced from Osborn & Mook, 1921) and Apatosaurus louisae CM 3018 (B; traced from Gilmore, 1936) in anterior view. Note the separated (A; C231-0) or dorsally united spinoprezygapophyseal laminae (B; C231-1), the fossa between them (B; C233-0), and the triangular processes of the neural spine, that project further than the zygapophyses (A; C267-2). Abb.: acpl, anterior centroparapophyseal lamina; cprl, centroprezygapophyseal lamina; nc, neural canal; pap, parapophysis; prsl, prespinal lamina; prz, prezygapophysis; spdl, spinodiapophyseal lamina; tp, transverse process. Scaled to same anterior condyle height.
Figure 65
Figure 65. Diplodocimorph dorsal neural arches.
Dorsal neural arches of Diplodocus carnegii CM 84 (A; traced from Hatcher, 1901) and Nopcsaspondylus alarconensis holotype specimen (B; traced from Nopcsa, 1902) in anterior view. Note the festooned spdl typical for rebbachisaurids (B; C232-1), in contrast to the plesiomorphic state (A; C232-0), and the notched (A; C281-1), or straight to convex spine summits (B; C281-0). Abb.: cprl, centroprezygapophyseal lamina; prdl, prezygodiapophyseal lamina; prsl, prespinal lamina; tp, transverse process. Not to scale.
Figure 66
Figure 66. Eusauropod posterior dorsal vertebrae.
Posterior dorsal vertebrae of Losillasaurus giganteus MCNV Lo-11 (A), and Apatosaurus louisae CM 3018 (B; modified from Gilmore, 1936) in posterior view. Note the concave dorsal end of the posl (A; C234-1), the horizontal (A; C275-0), instead of angled (B; C275-1) postzygapophyseal facets, and the medial spinopostzygapophyseal lamina (B; C278-1). Abb.: cprl, centroprezygapophyseal lamina; hys, hyposphene; lspol, lateral spinopostzygapophyseal lamina; posl, postspinal lamina; poz, postzygapophysis; spdl, spinodiapophyseal lamina. Scaled to same posterior cotyle height.
Figure 67
Figure 67. Dorsal vertebra 4 of “Dinheirosaurus” lourinhanensis ML 414 in ventral view.
Note the ventral keel (C242-1) in anterior dorsal vertebrae. Abb.: DV, dorsal vertebra; pcdl, posterior centrodiapophyseal lamina; pl, pleurocoel; podl, postzygodiapophyseal lamina; tp, transverse process.
Figure 68
Figure 68. Dorsal vertebra 1 of apatosaurines.
Dorsal vertebra 1 of Apatosaurus louisae CM 3018 (A) and Brontosaurus parvus UW 15556 (B; both traced from Gilmore, 1936) in posterior view. Note the different positions of the transverse processes (high, A, C243-0; low, B, C243-1), and the varying width of the base of the bifurcated spines (wide, A, C244-0; narrow, B, C244-1). Abb.: di, diapophysis; pcdl, posterior centrodiapophyseal lamina; podl, postzygodiapophyseal lamina; poz, postzygapophysis; prz, prezygapophysis. Scaled to same posterior cotyle height.
Figure 69
Figure 69. Diplodocine mid-dorsal vertebrae.
Mid-dorsal vertebrae of “Dinheirosaurus” lourinhanensis ML 414 (A) and Galeamopus sp. SMA 0011 (B) in lateral view. Note the pleurocoels that are entirely situated on the centrum (A; C247-0), or invade the neural arch (B; C247-1), the accessory spinal lamina connecting to the junction of spol and spdl (A; C251-1), the vertical lamina subdividing the pleurocoel (A; C253-1), the anteriorly displaced parapophysis (A; C256-1) in contrast to its usual position above the anterior edge (B; C256-0), and the horizontal accessory lamina connecting the hyposphene with the pcdl (A; C260-1). Abb.: cpol, centropostzygapophyseal lamina; pcdl, posterior centrodiapophyseal lamina; pcpl, posterior centroparapophyseal lamina; podl, postzygodiapophyseal lamina; spol, spinopostzygapophyseal lamina. Scaled to same vertebral height.
Figure 70
Figure 70. Diplodocid posterior dorsal vertebrae.
Posterior dorsal vertebrae of Apatosaurus louisae CM 3018 (A; traced from Gilmore, 1936) and Supersaurus vivianae BYU 9044 (B; traced from Jensen, 1985) in left (A) and right (B) lateral view. Note the prpl (A; C255-1), the anteriorly displaced parapophysis (B; C256-1), the acpl (A; C257-1), the pcpl (B; C258-1), the lateral branch of the cpol (B; C261-1), the pronounced opisthocoely (B; C270-2), and the anteriorly inclined base of the neural spine (A; C280-1). Abb.: cpol, centropostzygapophyseal lamina; hys, hyposphene; pl, pleurocoel; posl, postspinal lamina; poz, postzygapophysis; spdl, spinodiapophyseal lamina. Scaled to same posterior cotyle height.
Figure 71
Figure 71. Neosauropod posterior dorsal vertebrae.
Posterior dorsal vertebrae of Giraffatitan brancai MB.R.3822 (A), Apatosaurus louisae CM 3018 (B; traced from Gilmore, 1936), and Diplodocus carnegii CM 84 (C; traced from Hatcher, 1901) in right lateral view. Note the double pcpl (C; C258-2), the accessory lamina in the parapophyseal centrodiapophyseal fossa (C; C259-1), the accessory lamina connecting the hyposphene with the pcdl (C; C260-1), the infradiapophyseal pneumatic foramen (A; C262-1), the dorsally tapering neural spine (A; C265-1), the different shapes of the pleurocoels (C271), and the ventrally open parapophyseal, centrodiapophyseal fossa (B; C273-0). Abb.: cprl, centroprezygapophyseal lamina; lspol, lateral spinopostzygapophyseal lamina; posl, postspinal lamina; poz, postzygapophysis; prsl, prespinal lamina; prz, prezygapophysis; spdl, spinodiapophyseal lamina; tp, transverse process. Scaled to same total height.
Figure 72
Figure 72. Posterior dorsal vertebra of “Elosaurus” parvus CM 566 in lateral anterodorsal view.
Note the greatly reduced spinoprezygapophyseal lamina, which does not reach the prezygapophysis (C274-0). Only the base of the neural arch is preserved (see Peterson & Gilmore, 1902). Abb.: lspol, lateral spinopostzygapophyseal lamina; podl, postzygodiapophyseal lamina; posl, postspinal lamina; poz, postzygapophysis; prdl, prezygodiapophyseal lamina.
Figure 73
Figure 73. Flagellicaudatan dorsal rib heads.
Dorsal rib heads of Suuwassea emilieae ANS 21122 (A; modified from Harris, 2006b), Apatosaurus louisae CM 3018 (B; modified from Gilmore, 1936) and Barosaurus lentus AMNH 6341 (C, fragment) in anterior (A, B) and posterior (C) view. Note the transverse ridge (C; C283-1), the pneumatic foramen (B; C284-1), and two of three different orientations of the tuberculum in respect to the rib shaft (C285). Grey lines in C indicate the continuation of the rib if complete. Abb.: cap, capitulum; tub, tuberculum. Not to scale.
Figure 74
Figure 74. Sacrum of Brontosaurus amplus YPM 1981 in ventral view (modified from Ostrom & McIntosh, 1966).
Note the oblique ridge on sacral rib III (C288-1). Abb.: DV, dorsal vertebra; SV, sacral vertebra; sy, sacricostal yoke. Scale bar = 20 cm.
Figure 75
Figure 75. Diplodocid sacra.
Sacra of Brontosaurus parvus UW 15556 (A; modified from Hatcher, 1903) and Diplodocus hallorum AMNH 223 (B; modified from Osborn, 1899) in left lateral view. Note the flat (A; C289-0) instead of ornamented sacral neural spine top (B; C289-1), the spdl that extends ventrally to the diapophysis (A; C290-1), and the parallel (A; C291-0) in contrast to converging neural spines (B; C291-1). Abb.: DR, dorsal rib; il, ilium; SV, sacral vertebra. Scaled to the same height.
Figure 76
Figure 76. Anterior caudal vertebra of Diplodocus carnegii CM 94 in left lateral view.
Note various characters typical for the genus: a depression between the lateral spinal lamina and the postspinal lamina (C292-1), the large pleurocoel (C297-1), an additional pneumatic foramen posterodorsally in the caudal centrum (C298-1), the accessory lamina between pre- and postzygapophysis (C301-1), a dorsally widened lateral spinal lamina (C303-1), a pre-epipophysis (C311-1), the double anterior centrodiapophyseal lamina (C314-1), the distinct spinoprezygapophyseal lamina that extends onto the lateral surface of the spine (C318-1) and contacts the spinopostzygapophyseal lamina (C319-1), the presence of a prespinal lamina (C320-1) with a thickened anterior rim (C321-1), and the presence of a postspinal lamina (C323-1). Scale bar = 10 cm.
Figure 77
Figure 77. Diplodocimorph anterior caudal vertebrae.
Anterior caudal vertebrae of Demandasaurus darwini MDS-RVII,610 (A; traced from Torcida Fernández-Baldor et al., 2011), Brontosaurus excelsus YPM 1980 (B; traced from Ostrom & McIntosh, 1966), and Diplodocus carnegii CM 84 (C; traced from Hatcher, 1901) in anterior view. Note the lateral triangular processes (B; C293-1), the mostly rectangular outline of the spine (B; C294-0), the wing-like transverse processes (A; C299-1), the convex prezygapophyses (B; C310-1), the laterally (C; C312-0) or dorsally directed ventral surface of the transverse process (A; C312-1), the notched neural spine top (C; C326-1), the gradual (C; C328-0) or abrupt distal expansion of the spine (B; C328-1), and the foramen piercing the transverse process (B; C350-0). Abb.: prsl, prespinal lamina; prz, prezygapophysis; sprl, spinoprezygapophyseal lamina; tp, transverse process. Scaled to same total height.
Figure 78
Figure 78. Diplodocid anterior caudal vertebrae.
Anterior caudal vertebrae of Apatosaurus ajax YPM 1860 (A) and Diplodocus sp. DMNS 462 (B) in ventral view. Note the ventral keel (A; C296-1), the ventral foramen (B; C305-1) within the ventral longitudinal hollow (B; C330-1), and the anteroposteriorly expanded distal end of the transverse process (A; C316-1). Abb.: ns, neural spine. Scaled to same centrum length.
Figure 79
Figure 79. Flagellicaudatan anterior caudal vertebrae.
Anterior caudal vertebrae of Dicraeosaurus hansemanni MB.R.3774 (A), the indeterminate apatosaurine NHMUK R.3211 (B), and Barosaurus lentus YPM 429 (C) in left lateral view. Note the reduced (B; C307-0) or large pneumatopores (C; C307-1), the distinct posterior centrodiapophyseal and postzygodiapophyseal laminae (C; C315-1), and the postspinal lamina that projects dorsally (A; C324-1). Abb.: prz, prezygapophysis; sprl, spinoprezygapophyseal lamina; tp, transverse process. Scaled to same posterior centrum height.
Figure 80
Figure 80. Anterior caudal vertebra of Dicraeosaurus hansemanni MB.R.3774 in posterior view.
Note the hyposphenal ridge (C325-0). Abb.: cpol, centropostzygapophyseal lamina; posl, postspinal lamina; poz, postzygapophysis; tp, transverse process. Scale bar = 10 cm.
Figure 81
Figure 81. Diplodocid mid-caudal vertebrae.
Mid-caudal vertebra of SMA 0087 (A) and Diplodocus hallorum AMNH 223 (B) in right (A) and left (B) lateral view. Note the ventrolateral (A; C329-1) and lateral ridges (A; C333-1), the flat ventral border of the centrum (B; 335-1), the anteriorly shifted neural arch (B; C337-1), the differing inclinations of the neural spine (C340), which overhang the postzygapophyses (A; C343-0), or not (B; C343-1). Abb.: ns, neural spine; prz, prezygapophysis. Scaled to the same anterior articular surface height.
Figure 82
Figure 82. Eusauropod mid-caudal vertebrae.
Mid-caudal vertebrae of Losillasaurus giganteus MCNV Lo-32 (A), Isisaurus colberti ISIR335/42 (B; traced from Jain & Bandyopadhyay, 1997), Diplodocus sp. AMNH 655 (C), and Barosaurus lentus AMNH 6341 (D) in anterior view, illustrating the four states of character 334 (A, circular; B, quadrangular; C, trapezoidal; D, flat ventral margin with rounded lateral edges). Abb.: nc, neural canal; ns, neural spine; prz, prezygapophysis. Scaled to same anterior surface height.
Figure 83
Figure 83. Mid-caudal vertebra of Diplodocus longus YPM 1920 in dorsal view.
Note the transverse ridge connecting the prezygapophyses posteriorly (C338-1). Abb.: poz, postzygapophysis; prz, prezygapophysis; sprl, spinoprezygapophyseal lamina. Scale bar = 5 cm.
Figure 84
Figure 84. Eusauropod mid-caudal vertebrae.
Mid-caudal vertebrae of Cetiosauriscus stewarti NHMUK R.3078 (A; traced from Woodward, 1905) and Supersaurus vivianae WDC DMJ-021 (B; traced from a photo by D Lovelace) in left lateral view, illustrating the anterodorsal projection on the spine top (B; C341-1), and the posteriorly elongated neural spine (A; C344-0). Abb.: lr, lateral ridge; poz, postzygapophysis; prz, prezygapophysis. Scaled to same total vertebral height.
Figure 85
Figure 85. Anterior chevron of Apatosaurus ajax YPM 1860 in anterior, right lateral, and posterior view (left to right).
Note the crus bridging the haemal canal dorsally (broken here; C352-0), the anterior, longitudinal median ridge (C354-1), and the step-like posterior expansion of the distal blade (C355-1). Abb.: db, distal blade; hc, haemal canal. Scale bar = 10 cm.
Figure 86
Figure 86. Mid-chevron of Diplodocus hallorum AMNH 223 in dorsal, left lateral, and ventral view (top-bottom).
Note the anterior and posterior projections (C353-1), the rugose horizontal ridge (C356-1), and the medial fossa (C357-1). Abb.: pas, proximal articular surface. Scale bar = 5 cm.
Figure 87
Figure 87. Scapula outlines of Diplodocoidea.
Scapula outlines of Haplocanthosaurus priscus CM 879 (A), Limaysaurus tessonei MUCPv-205 (B), Apatosaurus louisae CM 3018 (C; all traced from Mannion, 2009), and Diplodocus hallorum AMNH 223 (D; traced from Osborn, 1899). Note the concave dorsal border of the acromion process (B; C363-1), the acromion process that reaches almost half the scapular length (D; C364-1), the different shapes of the acromial edge (straight, C, C367-0; with rounded expansion distally, A, C367-1; raquet-shaped, B, C367-2), the ventrally curving ventral margin (A; C368-1), and the subtriangular process (D; C370-1). Abb.: acm, acromion; ca, coracoid articulation; db, distal blade. Scaled to same scapular length.
Figure 88
Figure 88. Apatosaurine scapulae.
Right scapulae of “Elosaurus” parvus CM 566 (A) and Brontosaurus excelsus YPM 1980 (B) in lateral view. Note the excavated area between the acromial edge and the distal blade (A; C365-0) and the flat muscle scar at the base of the distal blade (B; C369-1). Abb.: acr, acromial ridge; db, distal blade. Scaled to same length.
Figure 89
Figure 89. Neosauropod coracoids.
Left coracoids of Amphicoelias altus AMNH 5764? (A) and Apatosaurus ajax YPM 1860 (B; traced from Bakker, 1998) in anterolateral view. Note the rounded (A; C372-0) instead of rectangular shape (B; C372-1), and the deep (A; C373-1) in contrast to shallow infraglenoid groove (B; C373-0). Abb.: CF, coracoid foramen. Scaled to the same height.
Figure 90
Figure 90. Neosauropod sternal plates.
Right (A, B) and left (C) sternal plates of Giraffatitan brancai MB.R.2181 (A; modified from Janensch, 1961), Brontosaurus amplus YPM 1981 (B), and Tornieria africana MB.R.2726 (C) in ventral view. Note the different shapes (oval, B, C374-0; triangular, C, C374-1; crescentic, A, C374-2), the longitudinal ridge (A; C375-1), the anterior dorsoventral thickening (C; C376-1), and the straight posterior border (C; C377-1). Scaled to same length.
Figure 91
Figure 91. Eusauropod humeri.
Humeri of Turiasaurus riodevensis CPT 1195 (A; traced from Royo-Torres, Cobos & Alcalá, 2006) and Suuwassea emilieae ANS 21122 (B; traced from Harris, 2007) in anterior view. Note the pronounced proximolateral corner (B; C383-1), the symmetrical proximal transverse expansion (B; C384-1), the unexpanded (A; C385-1) or expanded lateral edges (B; C385-0), and the tubercle marking the center of the proximal concavity (B; C386-1). Abb.: dpc, deltopectoral crest. Scaled to same length.
Figure 92
Figure 92. Distal half of radius of Dyslocosaurus polyonychius AC 663.
Note the very weak ridges for the articulation with the ulna (C392-0). Scale bar = 10 cm.
Figure 93
Figure 93. Diplodocid carpals.
Carpal elements of Galeamopus sp. SMA 0011 (A) and Brontosaurus parvus UW 15556 (B; traced from Bonnan, 2003) in anterior view, illustrating the two different shapes described in C396: (0) block-like (A), and (1) disc-like (B). Scaled to the same transverse width.
Figure 94
Figure 94. Metacarpals III–V of Apatosaurus louisae CM 3018.
Articulated metacarpals III–V of Apatosaurus louisae CM 3018 in proximal view (traced from Gilmore, 1936), showing the greatly enlarged mc V, in comparison to mc III and IV (C403-1).
Figure 95
Figure 95. Manual phalanx phm I-1 of Apatosaurinae indet. NSMT-PV 20375 in medial view (traced from Upchurch, Tomida & Barrett, 2004).
Note the proximoventral lip-like projection (C404-1).
Figure 96
Figure 96. Neosauropod ilia.
Right (A) and left (B) ilium of Brachiosaurus altithorax FMNH P25107 (A; modified from Riggs, 1904) and Diplodocus hallorum DMNS 1494 (B) in lateral view. Note the pointed (B; C406-0) or semicircular preacetabular process (A; C406-1), the straight (A; C409-0) or strongly convex dorsal edge (B; C409-1), the location of the highest point (anterior to pubic peduncle, A, C410-1; posterior to pubis peduncle, B, C410-1), the triangular fossa on the pubic peduncle base (B; C412-1), and the tubercle in the postacetabular region (A; C413-1). Abb.: prap, preacetabular process; pup, pubic peduncle. Scaled to same height.
Figure 97
Figure 97. Neosauropod pubes.
Left (A, C) and right (B, reversed) pubis of Camarasaurus supremus AMNH 5761 (A; modified from Osborn & Mook, 1921), Dicraeosaurus hansemanni MB.R.4886 (B; modified from Janensch, 1961), and Brontosaurus excelsus YPM 1980 (C; modified from Ostrom & McIntosh, 1966) in lateral view. Note the different sizes of the ambiens process (C414, arrowheads: absent, A; hook-like, B; incipient, C). Abb.: ac, acetabular surface; ip, iliac peduncle; isa, ischial articular surface; of, obturator foramen. Scaled to same length.
Figure 98
Figure 98. Diplodocoid ischia.
Left ischium of Haplocanthosaurus priscus CM 572 (A; modified from Hatcher, 1903), Demandasaurus darwini MPS-RVII,18 (B; modified from Pereda Suberbiola et al., 2003), and Brontosaurus excelsus YPM 1980 (C; modified from Ostrom & McIntosh, 1966) in lateral (left) and distal (right) view. Note the flat (C; C418-0) in contrast to strongly concave acetabular margin (B; C418-1), the constricted neck of the iliac tubercle (B; C419-1), the elongate muscle scar on the proximal shaft (A; C421-1), the lateral fossa at the base of the blade (C; C422-1), the blade-like (B; C423-0) or medially expanded distal ends (C; C423-1), which form a more or less straight line (B; C424-1) or a V (C; C424-0), and can be straight (A; C426-0) or expanded dorsoventrally as well as transversely (C; C425-1). The light gray line in B indicates the distal view of the right ischium. Scaled to same length.
Figure 99
Figure 99. Neosauropod femora.
Right femur of Giraffatitan brancai MB.R.2694 (A), Dicraeosaurus hansemanni MB.R.4886 (B; both modified from Janensch, 1961), and Tornieria africana SMNS 12140 (C; modified from Fraas, 1908) in anterior view. Note the lateral bulge (A; C428-1), the medial deflection of the femoral head (A; C429-1), the different positions of the highest point of the femoral head (C431), the stepped ventral margin of the head (B; C432-1), the nutrient foramen (B; C434-1), the fourth trochanter, which is visible in anterior view (A; C436-0), and the anteriorly extended distal articular surface of the condyle (C; C439-1). Scaled to same length.
Figure 100
Figure 100. Eusauropod tibiae.
Tibia of Omeisaurus tianfuensis ZDM T5701 (A; traced from He, Li & Cai, 1988), Dyslocosaurus polyonychius AC 663 (B), and Apatosaurus louisae CM 3018 (C; traced from Gilmore, 1936) in proximal view. Note the different outlines (anteroposteriorly compressed, A, C441-1; subtriangular, B, C442-1; subrectangular, C, C442-0), and the projection posterior to the cnemial crest (B; C446-0). Abb.: cc, cnemial crest. Scaled to same anteroposterior length.
Figure 101
Figure 101. Distal end of tibia of Dyslocosaurus polyonychius AC 663 in medial view.
Note the transverse ridge on the anteromedial surface, close to the distal end (C443-1). Scale bar = 10 cm.
Figure 102
Figure 102. Diplodocoid tibiae.
Tibia of Zapalasaurus sp. MOZ-Pv 1244 (A; traced from Salgado et al., 2012) and Tornieria africana MB.R.2572 (B; traced from Remes, 2006) in anterolateral view, illustrating the different shapes of the cnemial crest (widely rounded, A, C444-0; triangular, B, C444-1). Scaled to same length.
Figure 103
Figure 103. Proximal end of the tibia of Suuwassea emilieae ANS 21122.
Proximal end of the tibia of Suuwassea emilieae ANS 21122 in posterolateral view, showing the distinct fibular trochanter on the posterior surface of the cnemial crest (C445-1). Scale bar = 10 cm.
Figure 104
Figure 104. Flagellicaudatan astragali.
Astragalus of SMA 0087 (A) and Dyslocosaurus polyonychius AC 663 (B) in dorsal (top) and posterior (bottom) view. Note the triangular shape in both views (B; C449-1, C450-1), the ascending process that reaches the posterior border (A; C453-1), the anterior border of the fibular facet, which is visible in posterior view (B; C454-1), the presence (B; C455-0) or absence (A; 455-1) of a sheet underlying the fibula, and the blunt (A; C456-0) in contrast to elongate medial end (B; C456-1). Scaled to the same proximodistal height.
Figure 105
Figure 105. Metatarsal I of Cetiosauriscus stewarti NHMUK R3078 in dorsal/anterior view.
Note the foramina (C459-1), the angled proximal (C460-0) and distal articular surfaces (C462-0), and the distinct posterolateral process on the distal articular surface (C463-1, C464-1). Scale bar = 5 cm.
Figure 106
Figure 106. Flagellicaudatan metatarsals II.
Right (A) and left (B) metatarsal II of SMA 0087 (A) and Dyslocosaurus polyonychius AC 663 (B) in dorsal/anterior view. Note the dorsolateral rugosity (C465-1) with its different developments (reduced, laterally, A, C468-0; prominent, reaching center or shaft, B, C468-1), or the posterolateral process (absent, A, C469-0; present, B, C469-1). Scaled to same proximodistal length.
Figure 107
Figure 107. Dicraeosaurid metatarsals II.
Right (A) and left (B) metatarsal II of Suuwassea emilieae ANS 21122 (A) and Dyslocosaurus polyonychius AC 663 (B) in proximal view, illustrating the concave (A) and straight (B) lateral margins (arrows; C467). Scaled to the same dorsoventral height.
Figure 108
Figure 108. Eusauropod metatarsals IV.
Right (A) and left (B) metatarsal IV of Suuwassea emilieae ANS 21122 (A) and Cetiosauriscus stewarti NHMUK R3078 (B) in proximal view, illustrating the curved (A; C470-0) and subtriangular outlines (B; C470-1). Scaled to the same dorsoventral height.
Figure 109
Figure 109. Diplodocid metatarsal V.
Metatarsal V of Barosaurus affinis YPM 419 (A) and SMA 0087 (B) in proximal view, illustrating the rhomboid (A; C471-1) or triangular outline of the articular surface (B; C471-0). Scaled to the same transverse width.
Figure 110
Figure 110. Pedal phalanx I-1 of the indeterminate apatosaurine NHMUK R3215 in medial view.
Note the ventral shelf (C473-1). Scale bar = 2 cm.
Figure 111
Figure 111. Eusauropod pedal ungual I.
Pedal ungual I of Cetiosauriscus stewarti NHMUK R3078 (A) and Dyslocosaurus polyonychius AC 663 (B) in lateral view, illustrating the two different courses of the canals (curved, A, C477-0; straight, B, C477-1). Dotted lines indicates the broken tip. Scaled to same proximal articular surface height.
Figure 112
Figure 112. Diplodocid morphospace.
First two principal coordinate axes of dissimilarity among Diplodocidae. The third axis is indicated by the size of the points. Note the intermediate, but rather diplodocine position of Amphicoelias altus AMNH 5764 and the rather apatosaurine position of FMNH P25112 (white circles).
Figure 113
Figure 113. Strict consensus tree of the complete analysis with equal weighting.
OTUs with species names and specimen numbers are type specimens. Tree length is 1,976 steps.
Figure 114
Figure 114. Pruned strict consensus tree obtained by equal weighting.
The following OTUs were pruned a posteriori: ‘Apatosaurusminimus AMNH 675, ‘Diplodocuslacustris YPM 1922, Dystrophaeus viaemalae USNM 2364, and the type individual of Australodocus bohetii. Note the dicraeosaurid affinities of Dyslocosaurus and Suuwassea, the inclusion in Diplodocinae of FMNH P25112, and the close association of Apatosaurus ajax with Apatosaurus louisae (in red).
Figure 115
Figure 115. Reduced consensus tree obtained by equal weighting.
Fifteen OTUs were deleted a posteriori. Numbers at the nodes indicate the number of changes between the two branches departing from the node (for the apomorphy count).
Figure 116
Figure 116. Strict consensus tree of the complete analysis with implied weighting.
OTUs with species names and specimen numbers are type specimens. Tree length is 194.21603 steps. Note the basal position of Barosaurus affinis, Cetiosauriscus stewarti, the somphospondylian affinities of ‘Apatosaurusminimus, the diplodocine affinities of Australodocus bohetii, as well as the contrasting positions of Apatosaurus ajax YPM 1860 and FMNH P25112 when compared with the result under equal weights (in red).
Figure 117
Figure 117. Pruned strict consensus tree obtained by implied weighting.
The following OTUs were deleted a posteriori: Diplodocus lacustris YPM 1922, CM 11161, USNM 2672, and Diplodocus longus YPM 1920. Note the position of Apatosaurus ajax as most derived apatosaurine, Dystrophaeus viaemalae within Dicraeosauridae, and Australodocus bohetii as a close relative of Dinheirosaurus and Supersaurus (arrowheads).
Figure 118
Figure 118. Reduced consensus tree obtained by implied weighting.
Eight OTUs were deleted a posteriori. Numbers at the nodes indicate the number of changes between the two branches departing from the node (for the apomorphy count), where they differ from the trees under equal weights.
Figure 119
Figure 119. Strict consensus trees of previous phylogenetic analyses with special focus on diplodocoid intrarelationships, with the number of taxa (T) and characters (C) indicated.
In brackets the number of diplodocid taxa and newly proposed characters. Taxon names were changed according to more recent publications, and diplodocid OTU highlighted with the red box.
Figure 120
Figure 120. Speciel-level cladogram of Diplodocidae.
Combined cladogram of diplodocid species-level intrarelationships, summarizing the results of the present thesis. Stem-based higher-level taxa are marked by an arrowhead, node-based taxa by a dot.

Similar articles

Cited by

References

    1. Antunes MT, Mateus O. Dinosaurs of Portugal. Comptes Rendus Palevol. 2003;2:77–95. doi: 10.1016/S1631-0683(03)00003-4. - DOI
    1. Apesteguía S. Evolution of the titanosaur metacarpus. In: Tidwell V, Carpenter K, editors. Thunder-lizards: the sauropodomorph dinosaurs. Bloomington: Indiana University Press; 2005. pp. 321–346.
    1. Arbour VM, Currie PJ. Analyzing taphonomic deformation of ankylosaur skulls using retrodeformation and Finite Element Analysis. PLoS ONE. 2012;7:e857. doi: 10.1371/journal.pone.0039323. - DOI - PMC - PubMed
    1. Ayer J. The Howe Ranch dinosaurs. Aathal: Sauriermuseum Aathal; 2000. p. 96.
    1. Bakker RT. Dinosaur mid-life crisis; the Jurassic-Cretaceous transition in Wyoming and Colorado. Bulletin of the New Mexico Museum of Natural History and Science. 1998;14:67–77.

Grants and funding

Being part of Emanuel Tschopp’s PhD dissertation, this study would not have been possible without the financial support through the doctoral fellowship from the Fundação para a Ciência e a Tecnologia of the Ministério de Educação e Ciência, Portugal (SFRH/BD/66209/2009). Travel subsidies were kindly provided by Synthesys (DE-TAF-1150) for a collection visit at Museum für Naturkunde, Berlin. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.