Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Dec 20;492(7429):369-75.
doi: 10.1038/nature11677. Epub 2012 Dec 5.

Seventy-five genetic loci influencing the human red blood cell

Pim van der Harst  1 Weihua ZhangIrene Mateo LeachAugusto RendonNiek VerweijJoban SehmiDirk S PaulUlrich EllingHooman AllayeeXinzhong LiAparna RadhakrishnanSian-Tsung TanKatrin VossChristian X WeichenbergerCornelis A AlbersAbtehale Al-HussaniFolkert W AsselbergsMarina CiulloFabrice DanjouChristian DinaTõnu EskoDavid M EvansLude FrankeMartin GögeleJaana HartialaMicha HerschHilma HolmJouke-Jan HottengaStavroula KanoniMarcus E KleberVasiliki LagouClaudia LangenbergLorna M LopezLeo-Pekka LyytikäinenOlle MelanderFederico MurgiaIlja M NoltePaul F O'ReillySandosh PadmanabhanAfshin ParsaNicola PirastuEleonora PorcuLaura PortasInga ProkopenkoJanina S RiedSo-Youn ShinClara S TangAlexander TeumerMichela TragliaSheila UliviHarm-Jan WestraJian YangJing Hua ZhaoFranco AnniAbdel AbdellaouiAntony AttwoodBeverley BalkauStefania BandinelliFrançois BastardotBeben BenyaminBernhard O BoehmWilliam O CooksonDebashish DasPaul I W de BakkerRudolf A de BoerEco J C de GeusMarleen H de MoorMaria DimitriouFrancisco S DominguesAngela DöringGunnar EngströmGudmundur Ingi EyjolfssonLuigi FerrucciKrista FischerRenzo GalanelloStephen F GarnerBernd GenserQuince D GibsonGiorgia GirottoDaniel Fannar GudbjartssonSarah E HarrisAnna-Liisa HartikainenClaire E HastieBo HedbladThomas IlligJennifer JolleyMika KähönenIdo P KemaJohn P KempLiming LiangHeather Lloyd-JonesRuth J F LoosStuart MeachamSarah E MedlandChrista MeisingerYasin MemariEvelin MihailovKathy MillerMiriam F MoffattMatthias NauckMaria NovatchkovaTeresa NutileIsleifur OlafssonPall T OnundarsonDebora ParraccianiBrenda W PenninxLucia PerseuAntonio PigaGiorgio PistisAnneli PoutaUrsula PucOlli RaitakariSusan M RingAntonietta RobinoDaniela RuggieroAimo RuokonenAude Saint-PierreCinzia SalaAndres SalumetsJennifer SambrookHein SchepersCarsten Oliver SchmidtHerman H W SilljéRob SladekJohannes H SmitJohn M StarrJonathan StephensPatrick SulemToshiko TanakaUnnur ThorsteinsdottirVinicius TraganteWiek H van GilstL Joost van PeltDirk J van VeldhuisenUwe VölkerJohn B WhitfieldGonneke WillemsenBernhard R WinkelmannGerald WirnsbergerAle AlgraFrancesco CuccaAdamo Pio d'AdamoJohn DaneshIan J DearyAnna F DominiczakPaul ElliottPaolo FortinaPhilippe FroguelPaolo GaspariniAndreas GreinacherStanley L HazenMarjo-Riitta JarvelinKay Tee KhawTerho LehtimäkiWinfried MaerzNicholas G MartinAndres MetspaluBraxton D MitchellGrant W MontgomeryCarmel MooreGerjan NavisMario PirastuPeter P PramstallerRamiro Ramirez-SolisEric SchadtJames ScottAlan R ShuldinerGeorge Davey SmithJ Gustav SmithHarold SniederRossella SoriceTim D SpectorKari StefanssonMichael StumvollW H Wilson TangDaniela TonioloAnke TönjesPeter M VisscherPeter VollenweiderNicholas J WarehamBruce H R WolffenbuttelDorret I BoomsmaJacques S BeckmannGeorge V DedoussisPanos DeloukasManuel A FerreiraSerena SannaManuela UdaAndrew A HicksJosef Martin PenningerChristian GiegerJaspal S KoonerWillem H OuwehandNicole SoranzoJohn C Chambers
Affiliations

Seventy-five genetic loci influencing the human red blood cell

Pim van der Harst et al. Nature. .

Abstract

Anaemia is a chief determinant of global ill health, contributing to cognitive impairment, growth retardation and impaired physical capacity. To understand further the genetic factors influencing red blood cells, we carried out a genome-wide association study of haemoglobin concentration and related parameters in up to 135,367 individuals. Here we identify 75 independent genetic loci associated with one or more red blood cell phenotypes at P < 10(-8), which together explain 4-9% of the phenotypic variance per trait. Using expression quantitative trait loci and bioinformatic strategies, we identify 121 candidate genes enriched in functions relevant to red blood cell biology. The candidate genes are expressed preferentially in red blood cell precursors, and 43 have haematopoietic phenotypes in Mus musculus or Drosophila melanogaster. Through open-chromatin and coding-variant analyses we identify potential causal genetic variants at 41 loci. Our findings provide extensive new insights into genetic mechanisms and biological pathways controlling red blood cell formation and function.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interests.

Figures

Figure 1
Figure 1. Gene-expression patterns for 121 putative candidate genes, and tissue distribution of NDRs
a, Heat-map of candidate genes in the Differentiation Map of Hematology. Cell acronyms refer to original source (summarized in Supplementary Table 15). Expression above a log2 signal intensity (SI) of 6 is consistently above background. b, −log10 P of the signed-rank test for candidate genes being more highly expressed in each cell type than non-candidate genes. c, Time-course of differentiation of cord-blood haematopoietic stem cells cultured along the erythroid lineage. Putative candidate genes are shown as upregulated (red), downregulated (blue) or with the slope not being significantly different from zero (grey). d, Tissue distribution of NDRs containing a potential causal variant. NDRs were ranked by peak score (proportional to their peak height in FAIRE-seq). The rankings were then used to divide the NDRs into cumulative tranches to explore the effect of calling-thresholds on results (left bar, tranche containing the 5,000 top-ranked NDRs of each cell type; penultimate bar, tranche containing the 50,000 top-ranked NDRs of each cell type). The solid line indicates the number of SNPs overlapping the tranche-specific NDRs that are potential causal variants (defined as a sentinel SNP from the red blood cell GWAS, or a SNP in high linkage disequilibrium (r2 >0.8) and located within 1 Mb of a sentinel SNP; right-hand y axis); the bar summarizes the tissue distribution of these SNPs (as a percentage of tranche-specific total). The right-hand bar represents the expected tissue distribution for the SNPs under the null hypothesis. Results show that the potential causal variants are most commonly found in erythroblast-specific NDRs, and that this is true across the spectrum of peak-calling thresholds.
Figure 2
Figure 2. RNAi silencing in D. melanogaster
a, Plasmatocytes imaged by green fluorescent protein expression (light green spots on posterior dorsal end of L3 larvae) from wild-type (WT) cells and cells with RNAi silencing of orthologues of the following human genes: CRHR1 (106381, increased cell counts (CC)), KIT (13502, decreased CC) and CCNA2 (32421, increased CC). Numbers represent the unique Flybase IDs corresponding to the D. melanogaster orthologues. Scale bar, 0.5 mm. Bottom right, plasmatocyte size is also increased in CCNA2 compared to wild type. Scale bars, 0.1 mm. b, Crystal cells (black spots visualized by heating larvae to 60 °C) in wild-type larvae, and in RNAi silencing of ATP5O (12794, increased CC), UBE2L3 (110767, decreased CC) or ATP2B4 (101743, aggregated). Scale bars, 0.5 mm.
Figure 3
Figure 3. Association of SNP score with red blood cell phenotypes
Results presented as odds ratio (95% confidence interval) for participants in each SNP score quartile (Q) having phenotype level in the top quartile versus the lowest quartile of the respective population distribution, compared to people in the lowest quartile of SNP score (Q1, reference group). HB, haemoglobin; n, number of participants in the respective comparison of SNP score quartiles.

Similar articles

  • Gene-centric functional dissection of human genetic variation uncovers regulators of hematopoiesis.
    Nandakumar SK, McFarland SK, Mateyka LM, Lareau CA, Ulirsch JC, Ludwig LS, Agarwal G, Engreitz JM, Przychodzen B, McConkey M, Cowley GS, Doench JG, Maciejewski JP, Ebert BL, Root DE, Sankaran VG. Nandakumar SK, et al. Elife. 2019 May 9;8:e44080. doi: 10.7554/eLife.44080. Elife. 2019. PMID: 31070582 Free PMC article.
  • Interrogation of human hematopoiesis at single-cell and single-variant resolution.
    Ulirsch JC, Lareau CA, Bao EL, Ludwig LS, Guo MH, Benner C, Satpathy AT, Kartha VK, Salem RM, Hirschhorn JN, Finucane HK, Aryee MJ, Buenrostro JD, Sankaran VG. Ulirsch JC, et al. Nat Genet. 2019 Apr;51(4):683-693. doi: 10.1038/s41588-019-0362-6. Epub 2019 Mar 11. Nat Genet. 2019. PMID: 30858613 Free PMC article.
  • 52 Genetic Loci Influencing Myocardial Mass.
    van der Harst P, van Setten J, Verweij N, Vogler G, Franke L, Maurano MT, Wang X, Mateo Leach I, Eijgelsheim M, Sotoodehnia N, Hayward C, Sorice R, Meirelles O, Lyytikäinen LP, Polašek O, Tanaka T, Arking DE, Ulivi S, Trompet S, Müller-Nurasyid M, Smith AV, Dörr M, Kerr KF, Magnani JW, Del Greco M F, Zhang W, Nolte IM, Silva CT, Padmanabhan S, Tragante V, Esko T, Abecasis GR, Adriaens ME, Andersen K, Barnett P, Bis JC, Bodmer R, Buckley BM, Campbell H, Cannon MV, Chakravarti A, Chen LY, Delitala A, Devereux RB, Doevendans PA, Dominiczak AF, Ferrucci L, Ford I, Gieger C, Harris TB, Haugen E, Heinig M, Hernandez DG, Hillege HL, Hirschhorn JN, Hofman A, Hubner N, Hwang SJ, Iorio A, Kähönen M, Kellis M, Kolcic I, Kooner IK, Kooner JS, Kors JA, Lakatta EG, Lage K, Launer LJ, Levy D, Lundby A, Macfarlane PW, May D, Meitinger T, Metspalu A, Nappo S, Naitza S, Neph S, Nord AS, Nutile T, Okin PM, Olsen JV, Oostra BA, Penninger JM, Pennacchio LA, Pers TH, Perz S, Peters A, Pinto YM, Pfeufer A, Pilia MG, Pramstaller PP, Prins BP, Raitakari OT, Raychaudhuri S, Rice KM, Rossin EJ, Rotter JI, Schafer S, Schlessinger D, Schmidt CO, Sehmi J, Silljé HHW, Sinagra G, Sinner MF, Slowikowski K, Solima… See abstract for full author list ➔ van der Harst P, et al. J Am Coll Cardiol. 2016 Sep 27;68(13):1435-1448. doi: 10.1016/j.jacc.2016.07.729. J Am Coll Cardiol. 2016. PMID: 27659466 Free PMC article.
  • Translating Lung Function Genome-Wide Association Study (GWAS) Findings: New Insights for Lung Biology.
    Kheirallah AK, Miller S, Hall IP, Sayers I. Kheirallah AK, et al. Adv Genet. 2016;93:57-145. doi: 10.1016/bs.adgen.2015.12.002. Epub 2016 Feb 9. Adv Genet. 2016. PMID: 26915270 Review.
  • Maps of open chromatin highlight cell type-restricted patterns of regulatory sequence variation at hematological trait loci.
    Paul DS, Albers CA, Rendon A, Voss K, Stephens J; HaemGen Consortium; van der Harst P, Chambers JC, Soranzo N, Ouwehand WH, Deloukas P. Paul DS, et al. Genome Res. 2013 Jul;23(7):1130-41. doi: 10.1101/gr.155127.113. Epub 2013 Apr 9. Genome Res. 2013. PMID: 23570689 Free PMC article.

Cited by

References

    1. Chambers JC, et al. Genome-wide association study identifies variants in TMPRSS6 associated with hemoglobin levels. Nature Genet. 2009;41:1170–1172. - PMC - PubMed
    1. Ganesh SK, et al. Multiple loci influence erythrocyte phenotypes in the CHARGE Consortium. Nature Genet. 2009;41:1191–1198. - PMC - PubMed
    1. Soranzo N, et al. A genome-wide meta-analysis identifies 22 loci associated with eight hematological parameters in the HaemGen consortium. Nature Genet. 2009;41:1182–1190. - PMC - PubMed
    1. Kamatani Y, et al. Genome-wide association study of hematological and biochemical traits in a Japanese population. Nature Genet. 2010;42:210–215. - PubMed
    1. Ding K, et al. Genetic loci implicated in erythroid differentiation and cell cycle regulation are associated with red blood cell traits. Mayo Clin Proc. 2012;87:461–474. - PMC - PubMed

MeSH terms

Grants and funding