Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Nov;3(11):e170.
doi: 10.1371/journal.ppat.0030170.

A paradigm for virus-host coevolution: sequential counter-adaptations between endogenous and exogenous retroviruses

Affiliations

A paradigm for virus-host coevolution: sequential counter-adaptations between endogenous and exogenous retroviruses

Frederick Arnaud et al. PLoS Pathog. 2007 Nov.

Abstract

Endogenous retroviruses (ERVs) are remnants of ancient retroviral infections of the host germline transmitted vertically from generation to generation. It is hypothesized that some ERVs are used by the host as restriction factors to block the infection of pathogenic retroviruses. Indeed, some ERVs efficiently interfere with the replication of related exogenous retroviruses. However, data suggesting that these mechanisms have influenced the coevolution of endogenous and/or exogenous retroviruses and their hosts have been more difficult to obtain. Sheep are an interesting model system to study retrovirus-host coevolution because of the coexistence in this animal species of two exogenous (i.e., horizontally transmitted) oncogenic retroviruses, Jaagsiekte sheep retrovirus and Enzootic nasal tumor virus, with highly related and biologically active endogenous retroviruses (enJSRVs). Here, we isolated and characterized the evolutionary history and molecular virology of 27 enJSRV proviruses. enJSRVs have been integrating in the host genome for the last 5-7 million y. Two enJSRV proviruses (enJS56A1 and enJSRV-20), which entered the host genome within the last 3 million y (before and during speciation within the genus Ovis), acquired in two temporally distinct events a defective Gag polyprotein resulting in a transdominant phenotype able to block late replication steps of related exogenous retroviruses. Both transdominant proviruses became fixed in the host genome before or around sheep domestication (approximately 9,000 y ago). Interestingly, a provirus escaping the transdominant enJSRVs has emerged very recently, most likely within the last 200 y. Thus, we determined sequentially distinct events during evolution that are indicative of an evolutionary antagonism between endogenous and exogenous retroviruses. This study strongly suggests that endogenization and selection of ERVs acting as restriction factors is a mechanism used by the host to fight retroviral infections.

PubMed Disclaimer

Conflict of interest statement

Competing interests. The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Genomic Organization of the enJSRV Proviruses and Cellular Receptor Usage
(A) Genomic organization of the enJSRVs group. Five proviruses contained the typical intact genomic organization of the replication competent exogenous JSRV (top). The “W” in the gag reading frame of enJS56A1 and enJSRV-20 indicates the R21W substitution present in these two transdominant proviruses. Before the proximal LTR, enJSRV-20 contains a portion of an env gene indicated by the red box and a question mark. Stop codons are indicated by vertical lines and an asterisk (*). Large deletions in the proviruses are indicated by hatched boxes. The letter M in enJSRV-6 indicates the position of the first methionine (M) in env after the usual start codon present in the other enJSRV loci and the exogenous JSRV. enJSRV-6 contains a recombined structure with internal sequences present in the opposite direction compared to the 5′/3′ LTRs and the env gene (indicated by horizontal arrows). In all but two (enJSRV-2 and enJSRV-20) of the proviruses with both 5′ and 3′ LTR, a 6-bp duplication of the genomic DNA at the site of proviral integration was found that is typical of retroviruses. In contrast, enJSRV-2 has two different genomic sequences flanking the provirus, suggesting that this provirus is the likely product of recombination between two proviruses. enJSRV-20 contained a portion of env before the 5′ LTR, suggesting either an altered reversed transcription before integration or a recombination event. The 3′ flanking region of enJS56A1 and enJSRV-20 are essentially identical. enJSRV-1 presents a LINE element within the pol reading frame. (B) Receptor usage of exogenous and endogenous betaretroviruses of sheep. Viral entry assays were performed in NIH3T3 cells expressing sheep Hyal2 (ovine Hyal2), goat Hyal2 (goat Hyal2), or bovine Hyal2 (bovine Hyal2). Cells were transduced with retroviral vectors expressing alkaline phosphatase and pseudotyped with envelopes derived by the various enJSRVs indicated in the figure. Results are expressed as alkaline phosphatase foci per milliliter (APF/ml) and are indicated as <20 when the titer was less than 20 APF/ml.
Figure 2
Figure 2. Distribution of enJSRVs within the Caprinae
(A) Schematic representation of the PCRs used to specifically amplify each enJSRV provirus. (B) Simplified phylogenetic tree (branch length are not shown to scale) that shows representative species of the Caprinae subfamily used in this study. Common names and number of samples tested is indicated in parenthesis below the scientific names of each animal species. Colored circles beside the picture of each species symbolize the group of enJSRV loci indicated at the bottom of the figure that are present at least in some individuals of that particular species. The question mark indicates that the PCR for enJSRV-2 could not be optimized and has not been used in this study. Please note that the position of the genus Budorcas in the phylogenesis of the Caprinae is not well understood, thus it is schematically represented with a broken line [45]. Images of the various animal species were kindly provided by Brent Huffman (http://www.ultimateungulate.com/).
Figure 3
Figure 3. Fixation of R21W Substitution in enJS56A1 and enJSRV-20 Gag in the Domestic Sheep
(A) Schematic representation of the PCRs used to specifically amplify the 5′ LTR and the proximal region of gag of enJS56A1 or enJSRV-20. (B) Schematic representation of the presence or absence of the transdominant genotypes of enJS56A1 and/or enJSRV-20 in Ovis species. The phylogenetic tree indicates only relationships and is not proportional to time.
Figure 4
Figure 4. Phylogenetic Relationships among Endogenous and Exogenous Sheep Betaretroviruses
(A) Phylogenetic tree based on the sequences of the full provirus (excluding LTRs). (B) Phylogenetic tree based only on LTR sequences. Genealogies shown represent Bayesian 50% majority rule consensus trees and were rooted using isolate enJSRV-10, which is shared among Ovis and Capra spp. Clades with posterior probability values at least 0.95 are indicated by thick branches. Bootstrap scores 70% or above from ML analysis (based on 200 replicates) are shown above branches. For the larger LTR dataset, 1,000 replicates were analyzed using the neighbor-joining method with distances calculated from the ML model. Branches in grey are shown at smaller scales, which allowed for easier graphical representation of both fast-evolving exogenous and slow-evolving endogenous forms in the same tree figure. Two well-supported clades are visible in both trees. Provirus names in red indicate the insertionally polymorphic loci, while those underlined are the enJSRVs that show an intact genomic organization with complete uninterrupted open reading frames.
Figure 5
Figure 5. enJSRV-26 Is an Endogenous Retrovirus
(A) Genealogical tree illustrating the relationship between ram #200118011 (indicated by an arrow) and its relatives, whose DNA samples were analyzed in this study. The BAC library used in this study was derived from ram #200118011. (B) Detection of enJSRV-26 by amplification of the 5′ and 3′ provirus-flanking genomic sequences. enJSRV-26 was detected in blood, liver, and spleen DNA from ram #200118011. Five relatives of ram #200118011 (three half siblings and two sons of the ram grandsire) did not harbor enJSRV-26. The PCR for enJSRV-6 was used as a control for genomic DNA quality. (C) enJSRV-26 was present at relatively the same frequency in blood and tissues of ram #200118011.
Figure 6
Figure 6. enJSRV-26 Escapes Restriction by enJS56A1 and enJSRV-20
(A and B) 50 μg of cell lysates (bottom) and virus pellets from supernatants (top) of cells transfected with plasmids expressing the indicated viruses were analyzed 48 h post-transfection by SDS-PAGE and Western blotting employing an antiserum against the JSRV p23 (Matrix, MA). (C and D) viral pellets were quantified by scanning Western blot membranes and measuring chemifluorescence in a Molecular Dynamics Storm 840 imaging system using ImageQuant TL software. Results are presented as the means (± standard error) obtained in respectively six (C) and three (D) independent experiments. In (C) values are normalized with JSRV (designated as 100% viral release) while in the cotransfection assays 100% is taken as the value of each individual virus expressed by itself without enJS56A1 or enJSRV-20.
Figure 7
Figure 7. Dates and Events Associating the Evolutionary History of enJSRVs and Their Host
Schematic diagram illustrating key events of the evolutionary history of enJSRVs described in this study in association with estimated dates during the evolution of the domestic sheep and the Caprinae.

Similar articles

Cited by

References

    1. Gifford R, Tristem M. The evolution, distribution and diversity of endogenous retroviruses. Virus Genes. 2003;26:291–315. - PubMed
    1. Boeke JD, Stoye JP. Retrotransposons, endogenous retroviruses and the evolution of retroelements. In: Coffin JM, Hughes SH, Varmus HE, editors. Retroviruses. Plainview (NY): Cold Spring Harbor Laboratory Press; 1997. pp. 343–436. - PubMed
    1. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921. - PubMed
    1. Paces J, Pavlicek A, Paces V. HERVd: database of human endogenous retroviruses. Nucleic Acids Res. 2002;30:205–206. - PMC - PubMed
    1. Stoye JP. Endogenous retroviruses: still active after all these years? Curr Biol. 2001;11:R914–916. - PubMed

Publication types

MeSH terms

LinkOut - more resources