Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Jun 26;49(25):2379-93.
doi: 10.1016/j.jacc.2007.02.059. Epub 2007 Jun 8.

Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior

Affiliations
Free article
Review

Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior

Yiannis S Chatzizisis et al. J Am Coll Cardiol. .
Free article

Abstract

Although the entire coronary tree is exposed to the atherogenic effect of the systemic risk factors, atherosclerotic lesions form at specific arterial regions, where low and oscillatory endothelial shear stress (ESS) occur. Low ESS modulates endothelial gene expression through complex mechanoreception and mechanotransduction processes, inducing an atherogenic endothelial phenotype and formation of an early atherosclerotic plaque. Each early plaque exhibits an individual natural history of progression, regression, or stabilization, which is dependent not only on the formation and progression of atherosclerosis but also on the vascular remodeling response. Although the pathophysiologic mechanisms involved in the remodeling of the atherosclerotic wall are incompletely understood, the dynamic interplay between local hemodynamic milieu, low ESS in particular, and the biology of the wall is likely to be important. In this review, we explore the molecular, cellular, and vascular processes supporting the role of low ESS in the natural history of coronary atherosclerosis and vascular remodeling and indicate likely mechanisms concerning the different natural history trajectories of individual coronary lesions. Atherosclerotic plaques associated with excessive expansive remodeling evolve to high-risk plaques, because low ESS conditions persist, thereby promoting continued local lipid accumulation, inflammation, oxidative stress, matrix breakdown, and eventually further plaque progression and excessive expansive remodeling. An enhanced understanding of the pathobiologic processes responsible for atherosclerosis and vascular remodeling might allow for early identification of a high-risk coronary plaque and thereby provide a rationale for innovative diagnostic and/or therapeutic strategies for the management of coronary patients and prevention of acute coronary syndromes.

PubMed Disclaimer

Comment in

Similar articles

Cited by

MeSH terms

LinkOut - more resources