Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Apr 1;38(7):938-49.
doi: 10.1016/j.freeradbiomed.2004.12.019.

Protective effects of S-nitrosoglutathione against amyloid beta-peptide neurotoxicity

Affiliations

Protective effects of S-nitrosoglutathione against amyloid beta-peptide neurotoxicity

Tzyh-Chwen Ju et al. Free Radic Biol Med. .

Abstract

Amyloid beta-peptide (Abeta) is a major constituent of senile plaques in the brains of Alzheimer's disease (AD) patients. We have previously demonstrated ceramide production secondary to Abeta-induced activation of neutral sphingomyelinase (nSMase) in cerebral endothelial cells and oligodendrocytes, which may contribute to cellular injury during progression of AD. In this study, we first established the "Abeta --> nSMase --> ceramide --> free radical --> cell death" pathway in primary cultures of fetal rat cortical neurons. We also provided experimental evidence showing that S-nitrosoglutathione (GSNO), a potent endogenous antioxidant derived from the interaction between nitric oxide (NO) and glutathione, caused dose-dependent protective effects against Abeta/ceramide neurotoxicity via inhibition of caspase activation and production of reactive oxygen species (ROS). This GSNO-mediated neuroprotection appeared to involve activation of cGMP-dependent protein kinase (PKG), phosphatidylinositol 3-kinase (PI3K), and extracellular signal-regulated kinase (ERK). Activation of the cGMP/PKG pathway induced expression of thioredoxin and Bcl-2 that were beneficial to cortical neurons in antagonizing Abeta/ceramide toxicity. Consistently, exogenous application of thioredoxin exerted remarkable neuroprotective efficacy in our experimental paradigm. Results derived from the present study establish a neuroprotective role of GSNO, an endogenous NO carrier, against Abeta toxicity via multiple signaling pathways.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms