Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jul;42(1):88-95.
doi: 10.1161/01.HYP.0000074905.22908.A6. Epub 2003 May 19.

Effects of pressure overload on extracellular matrix expression in the heart of the atrial natriuretic peptide-null mouse

Affiliations

Effects of pressure overload on extracellular matrix expression in the heart of the atrial natriuretic peptide-null mouse

Dajun Wang et al. Hypertension. 2003 Jul.

Abstract

This study tested the hypothesis that atrial natriuretic peptide has direct antihypertrophic actions on the heart by modulating expression of genes involved in cardiac hypertrophy and extracellular matrix production. Hearts of male, atrial natriuretic peptide-null and control wild-type mice that had been subjected to pressure overload after transverse aortic constriction and control unoperated hearts were weighed and subjected to microarray, Northern blot, and immunohistochemical analyses. Microarray and Northern blot analyses were used to identify genes that are regulated differentially in response to stress in the presence and absence of atrial natriuretic peptide. Immunohistochemical analysis was used to identify and localize expression of the protein products of these genes. Atrial natriuretic peptide-null mice demonstrated cardiac hypertrophy at baseline and an exaggerated hypertrophic response to transverse aortic constriction associated with increased expression of the extracellular matrix molecules periostin, osteopontin, collagen I and III, and thrombospondin, as well as the extracellular matrix regulatory proteins, matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-3, and the novel growth factor pleiotrophin compared with wild-type controls. These results support the hypothesis that atrial natriuretic peptide protects against pressure overload-induced cardiac hypertrophy and remodeling by negative modulation of genes involved in extracellular matrix deposition.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources