Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 Jun 19;98(13):7101-6.
doi: 10.1073/pnas.141145998.

Synaptic regulation of protein synthesis and the fragile X protein

Affiliations
Review

Synaptic regulation of protein synthesis and the fragile X protein

W T Greenough et al. Proc Natl Acad Sci U S A. .

Abstract

Protein synthesis occurs in neuronal dendrites, often near synapses. Polyribosomal aggregates often appear in dendritic spines, particularly during development. Polyribosomal aggregates in spines increase during experience-dependent synaptogenesis, e.g., in rats in a complex environment. Some protein synthesis appears to be regulated directly by synaptic activity. We use "synaptoneurosomes," a preparation highly enriched in pinched-off, resealed presynaptic processes attached to resealed postsynaptic processes that retain normal functions of neurotransmitter release, receptor activation, and various postsynaptic responses including signaling pathways and protein synthesis. We have found that, when synaptoneurosomes are stimulated with glutamate or group I metabotropic glutamate receptor agonists such as dihydroxyphenylglycine, mRNA is rapidly taken up into polyribosomal aggregates, and labeled methionine is incorporated into protein. One of the proteins synthesized is FMRP, the protein that is reduced or absent in fragile X mental retardation syndrome. FMRP has three RNA-binding domains and reportedly binds to a significant number of mRNAs. We have found that dihydroxyphenylglycine-activated protein synthesis in synaptoneurosomes is dramatically reduced in a knockout mouse model of fragile X syndrome, which cannot produce full-length FMRP, suggesting that FMRP is involved in or required for this process. Studies of autopsy samples from patients with fragile X syndrome have indicated that dendritic spines may fail to assume a normal mature size and shape and that there are more spines per unit dendrite length in the patient samples. Similar findings on spine size and shape have come from studies of the knockout mouse. Study of the development of the somatosensory cortical region containing the barrel-like cell arrangements that process whisker information suggests that normal dendritic regression is impaired in the knockout mouse. This finding suggests that FMRP may be required for the normal processes of maturation and elimination to occur in cerebral cortical development.

PubMed Disclaimer

Figures

Figure 1
Figure 1
(A) Relative to baseline, total amount of RNA in precipitatable polysome fraction in K+ stimulated (filled circles) and unstimulated control (open circles) synaptoneurosomes. Potassium depolarization, glutamate administration (not shown), or administration of group I metabotropic receptor agonists such as dihydroxyphenylglycine (not shown) causes a rapid shift of RNA into the polysome-associated fraction. Ordinate: ratio polyribosomal RNA (fraction of total RNA) at t = 1, 2, 5, 10, or 20 min to polyribosomal fraction at t = 0. (B) The RNA shift to polysomes is associated with increased protein translation, as demonstrated by rapidly increased incorporation of radiolabeled methionine into the K+ stimulated (filled circles) synaptoneurosomes. Ordinate: data expressed as ratio of value at t = 10, 20 or 30 min to that at t = 0. (Modified from ref. .)
Figure 2
Figure 2
Immunohistochemistry with an antibody against FMRP in a rat trained on a motor skill learning task for 7 days (A); a rat maintained inactive in its cage for 7 days except for a brief daily period of handling (B); a rat exposed to a complex, social, and toy-filled environment for 20 days (C); and a rat similar to the one described in B but housed for 20 days (D). (Modified from ref. .)
Figure 3
Figure 3
Number of synapses (ordinate, y axis) with polyribosomal aggregates present in the spine for wild-type (WT) and fmr-1 knockout (KO) sighted FVB mice at 15 and 25 postnatal days (data from C. C. Spangler, A.Y.K., V. Bertaina-Anglade, C. K. Base, I. J. Weiler, and W.T.G., unpublished work). With the exception of one outlier, there is no overlap in the values for knockout and wild type, suggesting a pronounced reduction of synaptic protein synthesis in vivo in the knockout mice.
Figure 4
Figure 4
Summary of measurements of apical dendritic spines of layer V pyramidal neurons in temporal cortex of human autopsy samples of male patients with fragile X syndrome (FraX) and age- and sex-matched controls. (A) Arbitrary spine shape categorization scheme. Each spine was categorized as falling into one of the eight shape categories. (B) Relative numbers of spines of each type. Overall χ2 is significant (P < 0.05). Principal differences are relatively greater immature spine types C and D and fewer mature spine types F and G in affected individuals. (C) Numerical density of spines per unit length of dendrite is higher in affected individuals (*, P < 0.05). (D) Affected individuals have fewer short (0.5-μm) and more long (≥1.5-μm) spines. Overall χ2 is significant (P < 0.05). Data are from ref. .
Figure 5
Figure 5
Schematic depiction of dendritic development in wild-type and fragile X knockout mouse somatosensory whisker barrel cortex. In normal development in the wild type, dendrites initially extend both toward the interior hollow of the dendrite and toward the exterior septae region. As development progresses, hollow-oriented dendrites proliferate, while outwardly oriented dendrites regress. In the knockout mouse, the hollow-oriented dendrites proliferate normally, but the outwardly oriented dendrites exhibit impaired regression. P 0, postnatal day 0. Data are from Galvez et al. (R. Galvez, A. R. Gopal, and W.T.G., unpublished work).

Similar articles

Cited by

References

    1. Greenough W T, Black J E, Wallace C. Child Dev. 1987;58:539–559. - PubMed
    1. LeVay S, Wiesel T N, Hubel D H. J Comp Neurol. 1980;191:1–51. - PubMed
    1. Greenough W T, Chang F-L F. Dev Brain Res. 1988;43:148–152. - PubMed
    1. Steward O, Levy W. J Neurosci. 1982;2:284–291. - PMC - PubMed
    1. Steward O, Falk P. J Neurosci. 1986;6:412–423. - PMC - PubMed

Publication types

LinkOut - more resources