Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The relationship between SARS-CoV-2 infection and type 1 diabetes mellitus

Abstract

Environmental factors, in particular viral infections, are thought to have an important role in the pathogenesis of type 1 diabetes mellitus (T1DM). The COVID-19 pandemic reinforced this hypothesis as many observational studies and meta-analyses reported a notable increase in the incidence of T1DM following infection with SARS-CoV-2 as well as an association between SARS-CoV-2 infection and the risk of new-onset T1DM. Experimental evidence suggests that human β-cells express SARS-CoV-2 receptors and that SARS-CoV-2 can infect and replicate in β-cells, resulting in structural or functional alterations of these cells. These alterations include reduced numbers of insulin-secreting granules, impaired pro-insulin (or insulin) secretion, and β-cell transdifferentiation or dedifferentiation. The inflammatory environment induced by local or systemic SARS-CoV-2 infection might result in a set of signals (such as pro-inflammatory cytokines) that lead to β-cell alteration or apoptosis or to a bystander activation of T cells and disruption of peripheral tolerance that triggers autoimmunity. Other mechanisms, such as viral persistence, molecular mimicry and activation of endogenous human retroviruses, are also likely to be involved in the pathogenesis of T1DM following SARS-CoV-2 infection. This Review addresses the issue of the involvement of SARS-CoV-2 infection in the development of T1DM using evidence from epidemiological, clinical and experimental studies.

Key points

  • Epidemiological studies and meta-analyses reported an increase in the incidence of type 1 diabetes mellitus during the COVID-19 pandemic as well as an association between SARS-CoV-2 infection and the risk of new-onset type 1 diabetes mellitus.

  • Angiotensin-converting enzyme 2 (ACE2), transmembrane serine protease 2 (TMPRSS2) and alternative receptors of SARS-CoV-2 have been identified in several human cell types, including pancreatic islet β-cells.

  • SARS-CoV-2 proteins are detected in both exocrine and endocrine cells (including β-cells) of post-mortem pancreas samples from patients with COVID-19 and in samples from non-human primates intranasally or intratracheally infected with SARS-CoV-2.

  • SARS-CoV-2 can infect and replicate in pancreatic β-cells ex vivo, resulting in structural and functional alterations of these cells.

  • Pro-inflammatory cytokines produced during SARS-CoV-2 infection can impair human pancreatic islet function.

  • SARS-CoV-2 infection might promote islet autoimmunity through various mechanisms, including bystander activation of T cells, disruption of peripheral tolerance, viral persistence, molecular mimicry and activation of endogenous human retroviruses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of SARS-CoV-2 and its genome.
Fig. 2: Effects on the pancreas of ex vivo and in vivo SARS-CoV-2 infection.
Fig. 3: SARS-CoV-2 infection and pathogenesis of type 1 diabetes mellitus.

Similar content being viewed by others

References

  1. Atkinson, M. A., Eisenbarth, G. S. & Michels, A. W. Type 1 diabetes. Lancet 383, 69–82 (2014).

    Article  PubMed  Google Scholar 

  2. Roep, B. O. The role of T-cells in the pathogenesis of type 1 diabetes: from cause to cure. Diabetologia 46, 305–321 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Pociot, F. & Lernmark, Å. Genetic risk factors for type 1 diabetes. Lancet 387, 2331–2339 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Moltchanova, E. V., Schreier, N., Lammi, N. & Karvonen, M. Seasonal variation of diagnosis of type 1 diabetes mellitus in children worldwide. Diabet. Med. 26, 673–678 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Patterson, C. et al. Seasonal variation in month of diagnosis in children with type 1 diabetes registered in 23 European centers during 1989���2008: little short-term influence of sunshine hours or average temperature. Pediatr. Diabetes 16, 573–580 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Söderström, U., Aman, J. & Hjern, A. Being born in Sweden increases the risk for type 1 diabetes — a study of migration of children to Sweden as a natural experiment. Acta Paediatr. 101, 73–77 (2012).

    Article  PubMed  Google Scholar 

  7. Wang, Z., Xie, Z., Lu, Q., Chang, C. & Zhou, Z. Beyond genetics: what causes type 1 diabetes. Clin. Rev. Allerg. Immunol. 52, 273–286 (2017).

    Article  CAS  Google Scholar 

  8. Olmos, P. et al. The significance of the concordance rate for type 1 (insulin-dependent) diabetes in identical twins. Diabetologia 31, 747–750 (1988).

    Article  CAS  PubMed  Google Scholar 

  9. Peng, H. & Hagopian, W. Environmental factors in the development of type 1 diabetes. Rev. Endocr. Metab. Disord. 7, 149–162 (2007).

    Article  Google Scholar 

  10. Patelarou, E. et al. Current evidence on the associations of breastfeeding, infant formula, and cow’s milk introduction with type 1 diabetes mellitus: a systematic review. Nutr. Rev. 70, 509–519 (2012).

    Article  PubMed  Google Scholar 

  11. Stene, L. C. & Gale, E. A. M. The prenatal environment and type 1 diabetes. Diabetologia 56, 1888–1897 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. van der Werf, N., Kroese, F. G. M., Rozing, J. & Hillebrands, J.-L. Viral infections as potential triggers of type 1 diabetes. Diabetes Metab. Res. Rev. 23, 169–183 (2007).

    Article  PubMed  Google Scholar 

  13. Nekoua, M. P., Alidjinou, E. K. & Hober, D. Persistent coxsackievirus B infection and pathogenesis of type 1 diabetes mellitus. Nat. Rev. Endocrinol. 18, 503–516 (2022). This Review highlights evidence that persistent Coxsackievirus B infection triggers or accelerates islet autoimmunity and T1DM in susceptible individuals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Soltesz, G., Patterson, C. & Dahlquist, G.; EURODIAB Study Group. Worldwide childhood type 1 diabetes incidence — what can we learn from epidemiology? Pediatr. Diabetes 8, 6–14 (2007).

    Article  PubMed  Google Scholar 

  15. Hober, D. & Sauter, P. Pathogenesis of type 1 diabetes mellitus: interplay between enterovirus and host. Nat. Rev. Endocrinol. 6, 279–289 (2010). The interplay between enterovirus infection with β-cells, the immune system and host genes in the pathogenesis of T1DM is discussed.

    Article  PubMed  Google Scholar 

  16. Lönnrot, M. et al. Respiratory infections are temporally associated with initiation of type 1 diabetes autoimmunity: the TEDDY study. Diabetologia 60, 1931–1940 (2017). A prospective study of 8,676 newborn babies reporting that viral respiratory infections are associated with an increased risk of islet autoimmunity.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rasmussen, T., Witsø, E., Tapia, G., Stene, L. C. & Rønningen, K. S. Self-reported lower respiratory tract infections and development of islet autoimmunity in children with the type 1 diabetes high-risk HLA genotype: the MIDIA study. Diabetes Metab. Res. Rev. 27, 834–837 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Beyerlein, A., Wehweck, F., Ziegler, A.-G. & Pflueger, M. Respiratory infections in early life and the development of islet autoimmunity in children at increased type 1 diabetes risk: evidence from the BABYDIET study. JAMA Pediatr. 167, 800–807 (2013).

    Article  PubMed  Google Scholar 

  19. Mustonen, N. et al. Early childhood infections precede development of beta-cell autoimmunity and type 1 diabetes in children with HLA-conferred disease risk. Pediatr. Diabetes 19, 293–299 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Lee, H.-Y., Lu, C.-L., Chen, H.-F., Su, H.-F. & Li, C.-Y. Perinatal and childhood risk factors for early-onset type 1 diabetes: a population-based case-control study in Taiwan. Eur. J. Public Health 25, 1024–1029 (2015).

    Article  PubMed  Google Scholar 

  21. Ruiz, P. L. D. et al. Pandemic influenza and subsequent risk of type 1 diabetes: a nationwide cohort study. Diabetologia 61, 1996–2004 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kordonouri, O. et al. Infections in the first year of life and development of beta cell autoimmunity and clinical type 1 diabetes in high-risk individuals: the TRIGR cohort. Diabetologia 65, 2098–2107 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Beyerlein, A., Donnachie, E., Jergens, S. & Ziegler, A.-G. Infections in early life and development of type 1 diabetes. JAMA 315, 1899–1901 (2016).

    Article  PubMed  Google Scholar 

  24. Wu, R. et al. Respiratory infections and type 1 diabetes: potential roles in pathogenesis. Rev. Med. Virol. 33, e2429 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ho, D. et al. Identifying the lungs as a susceptible site for allele-specific regulatory changes associated with type 1 diabetes risk. Commun. Biol. 4, 1072 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim, D. et al. The architecture of SARS-CoV-2 transcriptome. Cell 181, 914–921 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu, Y.-C., Kuo, R.-L. & Shih, S.-R. COVID-19: the first documented coronavirus pandemic in history. Biomed. J. 43, 328–333 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Liu, J. et al. SARS-CoV-2 cell tropism and multiorgan infection. Cell Discov. 7, 17 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Unsworth, R. et al. New-onset type 1 diabetes in children during COVID-19: multicenter regional findings in the U.K. Diabetes Care 43, e170–e171 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Kamrath, C. et al. Incidence of type 1 diabetes in children and adolescents during the COVID-19 pandemic in Germany: results from the DPV registry. Diabetes Care 45, 1762–1771 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Gesuita, R. et al. Trends and cyclic variation in the incidence of childhood type 1 diabetes in two Italian regions over 33 years and during the COVID-19 pandemic. Diabetes Obes. Metab. 25, 1698–1703 (2023).

    Article  CAS  PubMed  Google Scholar 

  32. Rabbone, I. et al. Has COVID-19 delayed the diagnosis and worsened the presentation of type 1 diabetes in children? Diabetes Care 43, 2870–2872 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Rahmati, M. et al. The global impact of COVID‐19 pandemic on the incidence of pediatric new‐onset type 1 diabetes and ketoacidosis: a systematic review and meta‐analysis. J. Med. Virol. 94, 5112–5127 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. D’Souza, D. et al. Incidence of diabetes in children and adolescents during the COVID-19 pandemic: a systematic review and meta-analysis. JAMA Netw. Open 6, e2321281 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ruiz, P. L. D. et al. SARS-CoV-2 infection and subsequent risk of type 1 diabetes in 1.2 million children [abstract 233]. EASD 2022. https://www.easd.org/media-centre/home.html#!resources/sars-cov-2-infection-and-subsequent-risk-of-type-1-diabetes-in-1-2-million-children-3e68c8b2-dde1-43aa-8d75-af7356502994 (2022).

  36. Kendall, E. K., Olaker, V. R., Kaelber, D. C., Xu, R. & Davis, P. B. Association of SARS-CoV-2 infection with new-onset type 1 diabetes among pediatric patients from 2020 to 2021. JAMA Netw. Open 5, e2233014 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Qeadan, F. et al. The associations between COVID-19 diagnosis, type 1 diabetes, and the risk of diabetic ketoacidosis: a nationwide cohort from the US using the Cerner Real-World Data. PLoS One 17, e0266809 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lugar, M. et al. SARS-CoV-2 infection and development of islet autoimmunity in early childhood. JAMA 330, 1151–1160 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. McKeigue, P. M. et al. Relation of incident type 1 diabetes to recent COVID-19 infection: cohort study using e-health record linkage in Scotland. Diabetes Care 46, 921–928 (2023).

    Article  PubMed  Google Scholar 

  40. Noorzae, R., Junker, T. G., Hviid, A. P., Wohlfahrt, J. & Olsen, S. F. Risk of type 1 diabetes in children is not increased after SARS-CoV-2 infection: a nationwide prospective study in Denmark. Diabetes Care 46, 1261–1264 (2023).

    Article  PubMed  Google Scholar 

  41. Messaaoui, A., Hajselova, L. & Tenoutasse, S. Anti-SARS-CoV-2 antibodies in new-onset type 1 diabetes in children during pandemic in Belgium. J. Pediatr. Endocrinol. Metab. 34, 1319–1322 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Jia, X. et al. Prevalence of SARS-CoV-2 antibodies in children and adults with type 1 diabetes. Diabetes Technol. Ther. 23, 517–521 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rewers, M. et al. SARS-CoV-2 infections and presymptomatic type 1 diabetes autoimmunity in children and adolescents from Colorado, USA, and Bavaria, Germany. JAMA 328, 1252–1255 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Krischer, J. P. et al. SARS-CoV-2 — no increased islet autoimmunity or type 1 diabetes in teens. N. Engl. J. Med. 389, 474–475 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pietropaolo, M., Hotez, P. & Giannoukakis, N. Incidence of an insulin-requiring hyperglycemic syndrome in SARS-CoV-2-infected young individuals: is it type 1 diabetes? Diabetes 71, 2656–2663 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rahmati, M. et al. New-onset type 1 diabetes in children and adolescents as postacute sequelae of SARS-CoV-2 infection: a systematic review and meta-analysis of cohort studies. J. Med. Virol. 95, e28833 (2023).

    Article  CAS  PubMed  Google Scholar 

  47. Kamrath, C., Eckert, A. J., Holl, R. W. & Rosenbauer, J. Impact of the COVID-19 pandemic on children and adolescents with new-onset type 1 diabetes. Pediatr. Diabetes 2023, e7660985 (2023). This meta-analysis, including 40 studies carried out worldwide, reports an increased incidence of T1DM during the COVID-19 pandemic as well as an increased risk of T1DM following SARS-CoV-2 infection.

    Article  Google Scholar 

  48. Zhang, T. et al. Risk for newly diagnosed diabetes after COVID-19: a systematic review and meta-analysis. BMC Med. 20, 444 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lai, H. et al. Risk of incident diabetes after COVID-19 infection: a systematic review and meta-analysis. Metabolism 137, 155330 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rubino, F. et al. New-onset diabetes in covid-19. N. Engl. J. Med. 383, 789–790 (2020).

    Article  PubMed  Google Scholar 

  51. Eslami, N. et al. SARS-CoV-2: receptor and co-receptor tropism probability. Curr. Microbiol. 79, 133 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xu, H. et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int. J. Oral. Sci. 12, 8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shang, J. et al. Structural basis of receptor recognition by SARS-CoV-2. Nature 581, 221–224 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Heurich, A. et al. TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J. Virol. 88, 1293–1307 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Li, Y. et al. The MERS-CoV receptor DPP4 as a candidate binding target of the SARS-CoV-2 spike. iScience 23, 101160 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang, S. et al. AXL is a candidate receptor for SARS-CoV-2 that promotes infection of pulmonary and bronchial epithelial cells. Cell Res. 31, 126–140 (2021).

    Article  CAS  PubMed  Google Scholar 

  57. Wang, K. et al. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal. Transduct. Target. Ther. 5, 283 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cantuti-Castelvetri, L. et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science 370, 856–860 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shin, J., Toyoda, S., Fukuhara, A. & Shimomura, I. GRP78, a novel host factor for SARS-CoV-2: the emerging roles in COVID-19 related to metabolic risk factors. Biomedicines 10, 1995 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lempp, F. A. et al. Lectins enhance SARS-CoV-2 infection and influence neutralizing antibodies. Nature 598, 342–347 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Kearns, F. L. et al. Spike-heparan sulfate interactions in SARS-CoV-2 infection. Curr. Opin. Struct. Biol. 76, 102439 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Amraei, R. et al. Extracellular vimentin is an attachment factor that facilitates SARS-CoV-2 entry into human endothelial cells. Proc. Natl Acad. Sci. USA 119, e2113874119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Liao, Z. et al. Human transferrin receptor can mediate SARS-CoV-2 infection. Proc. Natl Acad. Sci. USA 121, e2317026121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wei, C. et al. HDL-scavenger receptor B type 1 facilitates SARS-CoV-2 entry. Nat. Metab. 2, 1391–1400 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Hoffmann, M. & Pöhlmann, S. Novel SARS-CoV-2 receptors: ASGR1 and KREMEN1. Cell Res. 32, 1–2 (2022).

    Article  CAS  PubMed  Google Scholar 

  66. Li, W. et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426, 450–454 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lau, Y. L. & Peiris, J. M. Pathogenesis of severe acute respiratory syndrome. Curr. Opin. Immunol. 17, 404–410 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hamming, I. et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 203, 631–637 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Roca-Ho, H., Riera, M., Palau, V., Pascual, J. & Soler, M. J. Characterization of ACE and ACE2 expression within different organs of the NOD mouse. Int. J. Mol. Sci. 18, 563 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Hikmet, F. et al. The protein expression profile of ACE2 in human tissues. Mol. Syst. Biol. 16, e9610 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Qi, J. et al. The scRNA-seq expression profiling of the receptor ACE2 and the cellular protease TMPRSS2 reveals human organs susceptible to SARS-CoV-2 infection. Int. J. Env. Res. Public Health 18, 284 (2021).

    Article  CAS  Google Scholar 

  72. Fignani, D. et al. SARS-CoV-2 receptor angiotensin i-converting enzyme type 2 (ACE2) is expressed in human pancreatic β-cells and in the human pancreas microvasculature. Front. Endocrinol. 11, 596898 (2020).

    Article  Google Scholar 

  73. Qadir, M. M. F. et al. SARS-CoV-2 infection of the pancreas promotes thrombofibrosis and is associated with new-onset diabetes. JCI Insight 6, e151551 (2023). SARS-CoV-2 infection is associated with thrombofibrosis of the pancreas in non-human primates and humans and is also associated with new-onset diabetes mellitus.

    Article  Google Scholar 

  74. Kusmartseva, I. et al. Expression of SARS-CoV-2 entry factors in the pancreas of normal organ donors and individuals with COVID-19. Cell Metab. 32, 1041–1051 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mawla, A. M. & Huising, M. O. Navigating the depths and avoiding the shallows of pancreatic islet cell transcriptomes. Diabetes 68, 1380–1393 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wu, C.-T. et al. SARS-CoV-2 infects human pancreatic β cells and elicits β cell impairment. Cell Metab. 33, 1565–1576 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Liu, F. et al. ACE2 expression in pancreas may cause pancreatic damage after SARS-CoV-2 infection. Clin. Gastroenterol. Hepatol. 18, 2128–2130 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Müller, J. A. et al. SARS-CoV-2 infects and replicates in cells of the human endocrine and exocrine pancreas. Nat. Metab. 3, 149–165 (2021). SARS-CoV-2 can infect human pancreatic endocrine cells and impair β-cell function.

    Article  PubMed  Google Scholar 

  79. Kharchenko, P. V. The triumphs and limitations of computational methods for scRNA-seq. Nat. Methods 18, 723–732 (2021).

    Article  CAS  PubMed  Google Scholar 

  80. Aigha, I. I. & Abdelalim, E. M. NKX6.1 transcription factor: a crucial regulator of pancreatic β cell development, identity, and proliferation. Stem Cell Res. Ther. 11, 459 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tang, X. et al. SARS-CoV-2 infection induces beta cell transdifferentiation. Cell Metab. 33, 1577–1591 (2021). SARS-CoV-2 antigens are detected in β-cells from pancreas necropsies of patients with COVID-19, and SARS-CoV-2 infection induces eIF2 pathway-mediated human β-cell transdifferentiation ex vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. van der Heide, V. et al. Limited extent and consequences of pancreatic SARS-CoV-2 infection. Cell Rep. 38, 110508 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Eizirik, D. L., Szymczak, F. & Mallone, R. Why does the immune system destroy pancreatic β-cells but not α-cells in type 1 diabetes? Nat. Rev. Endocrinol. 19, 425–434 (2023).

    Article  CAS  PubMed  Google Scholar 

  84. Ben Nasr, M. et al. Indirect and direct effects of SARS-CoV-2 on human pancreatic islets. Diabetes 71, 1579–1590 (2022). Inflammatory cytokines that are upregulated during COVID-19 in serum samples from patients can induce islet apoptosis.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Hodik, M. et al. Enterovirus infection of human islets of Langerhans affects β-cell function resulting in disintegrated islets, decreased glucose stimulated insulin secretion and loss of Golgi structure. BMJ Open Diabetes Res. Care 4, e000179 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yao, Y. & Wang, C. Dedifferentiation: inspiration for devising engineering strategies for regenerative medicine. NPJ Regen. Med. 5, 14 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Bensellam, M., Jonas, J.-C. & Laybutt, D. R. Mechanisms of β-cell dedifferentiation in diabetes: recent findings and future research directions. J. Endocrinol. 236, R109–R143 (2018).

    Article  PubMed  Google Scholar 

  88. Talchai, C., Xuan, S., Lin, H. V., Sussel, L. & Accili, D. Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure. Cell 150, 1223–1234 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Jopling, C., Boue, S. & Belmonte, J. C. I. Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nat. Rev. Mol. Cell Biol. 12, 79–89 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Spaeth, J. M. et al. Defining a novel role for the Pdx1 transcription factor in islet β-cell maturation and proliferation during weaning. Diabetes 66, 2830–2839 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fajgenbaum, D. C. & June, C. H. Cytokine storm. N. Engl. J. Med. 383, 2255–2273 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jarczak, D. & Nierhaus, A. Cytokine storm — definition, causes, and implications. Int. J. Mol. Sci. 23, 11740 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zanza, C. et al. Cytokine storm in COVID-19: immunopathogenesis and therapy. Medicina 58, 144 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Anindya, R., Rutter, G. A. & Meur, G. New-onset type 1 diabetes and severe acute respiratory syndrome coronavirus 2 infection. Immunol. Cell Biol. 101, 191–203 (2023).

    Article  CAS  PubMed  Google Scholar 

  95. Montefusco, L., Bolla, A. M. & Fiorina, P. Should we expect a wave of type 1 diabetes following SARS‐CoV‐2 pandemic? Diabetes Metab. Res. Rev. 38, e3529 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sathish, T., Tapp, R. J., Cooper, M. E. & Zimmet, P. Potential metabolic and inflammatory pathways between COVID-19 and new-onset diabetes. Diabetes Metab. 47, 101204 (2021).

    Article  CAS  PubMed  Google Scholar 

  97. Shao, S., Yang, Q., Pan, R., Yu, X. & Chen, Y. Interaction of severe acute respiratory syndrome coronavirus 2 and diabetes. Front. Endocrinol. 12, 731974 (2021).

    Article  Google Scholar 

  98. Coomans de Brachène, A. et al. Interferons are key cytokines acting on pancreatic islets in type 1 diabetes. Diabetologia 67, 908–927 (2024).

    Article  PubMed  Google Scholar 

  99. Millette, K. et al. SARS-CoV2 infects pancreatic beta cells in vivo and induces cellular and subcellular disruptions that reflect beta cell dysfunction. Preprint at Res. Sq. https://doi.org/10.21203/rs.3.rs-592374/v1 (2021). The effects of SARS-CoV-2 on β-cells are investigated in vivo using a rhesus macaque model.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Moudgil, K. D. & Sercarz, E. E. Crypticity of self antigenic determinants is the cornerstone of a theory of autoimmunity. Discov. Med. 5, 378–382 (2009).

    Google Scholar 

  101. Op de Beeck, A. & Eizirik, D. L. Viral infections in type 1 diabetes mellitus — why the β cells? Nat. Rev. Endocrinol. 12, 263–273 (2016).

    Article  CAS  PubMed  Google Scholar 

  102. Desimmie, B. A. et al. Insights into SARS-CoV-2 persistence and its relevance. Viruses 13, 1025 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gousseff, M. et al. Clinical recurrences of COVID-19 symptoms after recovery: viral relapse, reinfection or inflammatory rebound? J. Infect. 81, 816–846 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Buonsenso, D. et al. Viral persistence in children infected with SARS-CoV-2: current evidence and future research strategies. Lancet Microbe 4, e745–e756 (2023).

    Article  PubMed  Google Scholar 

  105. Davis, H. E., McCorkell, L., Vogel, J. M. & Topol, E. J. Long COVID: major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 21, 133–146 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. de Melo, G. D. et al. COVID-19-related anosmia is associated with viral persistence and inflammation in human olfactory epithelium and brain infection in hamsters. Sci. Transl. Med. 13, eabf8396 (2021).

    Article  PubMed  Google Scholar 

  107. Yazdanpanah, N. & Rezaei, N. Autoimmune complications of COVID‐19. J. Med. Virol. 94, 54–62 (2022). This review highlights the development of several autoimmune diseases following SARS-CoV-2 infection.

    Article  CAS  PubMed  Google Scholar 

  108. Mehta, P. et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 395, 1033–1034 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Montefusco, L. et al. Acute and long-term disruption of glycometabolic control after SARS-CoV-2. Infect. Nat. Metab. 3, 774–785 (2021).

    Article  CAS  PubMed  Google Scholar 

  110. Ehrenfeld, M. et al. Covid-19 and autoimmunity. Autoimmun. Rev. 19, 102597 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Swiecki, M. & Colonna, M. The multifaceted biology of plasmacytoid dendritic cells. Nat. Rev. Immunol. 15, 471–485 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Boddu, S. K., Aurangabadkar, G. & Kuchay, M. S. New onset diabetes, type 1 diabetes and COVID-19. Diabetes Metab. Syndr. 14, 2211–2217 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Pacheco, Y. et al. Bystander activation and autoimmunity. J. Autoimmun. 103, 102301 (2019).

    Article  CAS  PubMed  Google Scholar 

  114. Rahimi, K. Guillain-Barre syndrome during COVID-19 pandemic: an overview of the reports. Neurol. Sci. 41, 3149–3156 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Toubiana, J. et al. Kawasaki-like multisystem inflammatory syndrome in children during the covid-19 pandemic in Paris, France: prospective observational study. BMJ 369, m2094 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Mahévas, M. et al. Clinical characteristics, management and outcome of COVID-19-associated immune thrombocytopenia: a French multicentre series. Br. J. Haematol. 190, e224–e229 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Chen, M., Zhou, W. & Xu, W. Thyroid function analysis in 50 patients with COVID-19: a retrospective study. Thyroid 31, 8–11 (2021).

    Article  CAS  PubMed  Google Scholar 

  118. Galeotti, C. & Bayry, J. Autoimmune and inflammatory diseases following COVID-19. Nat. Rev. Rheumatol. 16, 413–414 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Akkuş, G. Newly-onset autoimmune diabetes mellitus triggered by COVID 19 infection: a case-based review. Endocr. Metab. Immune Disord. Drug Targets 23, 887–893 (2023).

    Article  PubMed  Google Scholar 

  120. Mishra, R., Elshimy, G., Kannan, L., Jacob, A. & Raj, R. Case report: SARS-CoV-2 infection as a trigger for diabetic ketoacidosis and newly detected pancreatic autoantibodies. Front. Endocrinol. 13, 983206 (2022).

    Article  Google Scholar 

  121. Genç, S. et al. Could COVID-19 trigger type 1 diabetes? Presentation of covid-19 case presented with diabetic ketoacidosis. Acta Endocrinol. 17, 532–536 (2021).

    Google Scholar 

  122. Alfishawy, M., Nassar, M., Mohamed, M., Fatthy, M. & Elmessiery, R. M. New-onset type 1 diabetes mellitus with diabetic ketoacidosis and pancreatitis in a patient with COVID-19. Sci. Afr. 13, e00915 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Nielsen-Saines, K., Li, E., Olivera, A. M., Martin-Blais, R. & Bulut, Y. Case report: insulin-dependent diabetes mellitus and diabetic keto-acidosis in a child with COVID-19. Front. Pediatrics 9, 628810 (2021).

    Article  Google Scholar 

  124. Marchand, L., Pecquet, M. & Luyton, C. Type 1 diabetes onset triggered by COVID-19. Acta Diabetol. 57, 1265–1266 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Gao, Z., Zhang, H., Liu, C. & Dong, K. Autoantibodies in COVID-19: frequency and function. Autoimmun. Rev. 20, 102754 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wang, E. Y. et al. Diverse functional autoantibodies in patients with COVID-19. Nature 595, 283–288 (2021).

    Article  CAS  PubMed  Google Scholar 

  127. Coppieters, K. T., Wiberg, A. & Von Herrath, M. G. Viral infections and molecular mimicry in type 1 diabetes. APMIS 120, 941–949 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lucchese, G. & Flöel, A. SARS-CoV-2 and Guillain-Barré syndrome: molecular mimicry with human heat shock proteins as potential pathogenic mechanism. Cell Stress. Chaperones 25, 731–735 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Moin, A. S. M., Nandakumar, M., Diane, A., Dehbi, M. & Butler, A. E. The role of heat shock proteins in type 1 diabetes. Front. Immunol. 11, 612584 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Quintana, F. J. & Cohen, I. R. The HSP60 immune system network. Trends Immunol. 32, 89–95 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. Brudzynski, K. Insulitis-caused redistribution of heat-shock protein HSP60 inside β-cells correlates with induction of HSP60 autoantibodies. Diabetes 42, 908–913 (1993).

    Article  CAS  PubMed  Google Scholar 

  132. Raz, I. et al. Treatment of new-onset type 1 diabetes with peptide DiaPep277® is safe and associated with preserved beta-cell function: extension of a randomized, double-blind, phase II trial. Diabetes Metab. Res. Rev. 23, 292–298 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Cappello, F., Marino Gammazza, A., Dieli, F., Conway de Macario, E. & Macario, A. J. Does SARS-CoV-2 trigger stress-induced autoimmunity by molecular mimicry? A hypothesis. J. Clin. Med. 9, 2038 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Vahabi, M., Ghazanfari, T. & Sepehrnia, S. Molecular mimicry, hyperactive immune system, and SARS-COV-2 are three prerequisites of the autoimmune disease triangle following COVID-19 infection. Int. Immunopharmacol. 112, 109183 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Devaux, C. A. & Camoin-Jau, L. Molecular mimicry of the viral spike in the SARS-CoV-2 vaccine possibly triggers transient dysregulation of ACE2, leading to vascular and coagulation dysfunction similar to SARS-CoV-2 infection. Viruses 15, 1045 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Patrizio, A., Ferrari, S. M., Antonelli, A. & Fallahi, P. A case of Graves’ disease and type 1 diabetes mellitus following SARS-CoV-2 vaccination. J. Autoimmun. 125, 102738 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Sasaki, H. et al. Newly developed type 1 diabetes after coronavirus disease 2019 vaccination: a case report. J. Diabetes Investig. 13, 1105–1108 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Tang, X., He, B., Liu, Z., Zhou, Z. & Li, X. Fulminant type 1 diabetes after COVID-19 vaccination. Diabetes Metab. 48, 101324 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Xiong, X. et al. Incidence of diabetes following COVID-19 vaccination and SARS-CoV-2 infection in Hong Kong: a population-based cohort study. PLoS Med. 20, e1004274 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Coate, K. C. et al. SARS-CoV-2 cell entry factors ACE2 and TMPRSS2 are expressed in the microvasculature and ducts of human pancreas but are not enriched in β cells. Cell Metab. 32, 1028–1040 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Garcia-Montojo, M. & Nath, A. HERV-W envelope expression in blood leukocytes as a marker of disease severity of COVID-19. eBioMedicine 67, 103363 (2021).

    Article  CAS  PubMed  Google Scholar 

  142. Levet, S. et al. An ancestral retroviral protein identified as a therapeutic target in type-1 diabetes. JCI Insight 2, e94387 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Levet, S. et al. Human endogenous retroviruses and type 1 diabetes. Curr. Diab Rep. 19, 141 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Balestrieri, E. et al. Evidence of the pathogenic HERV-W envelope expression in T lymphocytes in association with the respiratory outcome of COVID-19 patients. eBioMedicine 66, 103341 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Temerozo, J. R. et al. Human endogenous retrovirus K in the respiratory tract is associated with COVID-19 physiopathology. Microbiome 10, 65 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Halasa, N. B. et al. Maternal vaccination and risk of hospitalization for covid-19 among infants. N. Engl. J. Med. 387, 109–119 (2022).

    Article  CAS  PubMed  Google Scholar 

  147. Laguila Altoé, A. et al. Vaccine protection through placenta and breastfeeding: the unmet topic in COVID-19 pandemic. Front. Immunol. 13, 910138 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Rick, A.-M. et al. Impact of maternal SARS-CoV-2 booster vaccination on blood and breastmilk antibodies. PLoS One 18, e0287103 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Xie, Y. & Al-Aly, Z. Risks and burdens of incident diabetes in long COVID: a cohort study. Lancet Diabetes Endocrinol. 10, 311–321 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Barrett, C. E. et al. Risk for newly diagnosed diabetes >30 days after SARS-CoV-2 infection among persons aged <18 years — United States, March 1, 2020–June 28, 2021. MMWR Morb. Mortal. Wkly Rep. 71, 59–65 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Naveed, Z. et al. Association of COVID-19 infection with incident diabetes. JAMA Netw. Open 6, e238866 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Reges, O. et al. Time-varying association of acute and post-acute COVID-19 with new-onset diabetes mellitus among hospitalized and non-hospitalized patients. BMJ Open Diabetes Res. Care 11, e003052 (2023).

    Article  PubMed  Google Scholar 

  153. Shrestha, D. B. et al. New-onset diabetes in COVID-19 and clinical outcomes: a systematic review and meta-analysis. World J. Virol. 10, 275–287 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Sathish, T., Kapoor, N., Cao, Y., Tapp, R. J. & Zimmet, P. Proportion of newly diagnosed diabetes in COVID-19 patients: a systematic review and meta-analysis. Diabetes Obes. Metab. 23, 870–874 (2021).

    Article  CAS  PubMed  Google Scholar 

  155. Banerjee, M., Pal, R. & Dutta, S. Risk of incident diabetes post-COVID-19: a systematic review and meta-analysis. Prim. Care Diabetes 16, 591–593 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Ssentongo, P., Zhang, Y., Witmer, L., Chinchilli, V. M. & Ba, D. M. Association of COVID-19 with diabetes: a systematic review and meta-analysis. Sci. Rep. 12, 20191 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Li, J. et al. Increased risk of new-onset diabetes in patients with COVID-19: a systematic review and meta-analysis. Front. Public Health 11, 1170156 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Salmi, H. et al. New-onset type 1 diabetes in Finnish children during the COVID-19 pandemic. Arch. Dis. Child. 107, 180–185 (2022).

    Article  PubMed  Google Scholar 

  159. Shulman, R., Cohen, E., Stukel, T. A., Diong, C. & Guttmann, A. Examination of trends in diabetes incidence among children during the COVID-19 pandemic in Ontario, Canada, from March 2020 to September 2021. JAMA Netw. Open 5, e2223394 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Tittel, S. R. et al. Did the COVID-19 lockdown affect the incidence of pediatric type 1 diabetes in Germany? Diabetes Care 43, e172–e173 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Van Belle, T. L., Coppieters, K. T. & Von Herrath, M. G. Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiol. Rev. 91, 79–118 (2011).

    Article  PubMed  Google Scholar 

  162. Singh, S. et al. Impact of COVID-19 and lockdown on mental health of children and adolescents: a narrative review with recommendations. Psychiatry Res. 293, 113429 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Karavanaki, K. et al. Psychological stress as a factor potentially contributing to the pathogenesis of type 1 diabetes mellitus. J. Endocrinol. Invest. 31, 406–415 (2008).

    Article  CAS  PubMed  Google Scholar 

  164. Hirani, D., Salem, V., Khunti, K. & Misra, S. Newly detected diabetes during the COVID-19 pandemic: what have we learnt? Best Pract. Res. Clin. Endocrinol. Metab. 37, 101793 (2023).

    Article  PubMed  Google Scholar 

  165. Boboc, A. A. et al. SARS-CoV-2 positive serology and islet autoantibodies in newly diagnosed pediatric cases of type 1 diabetes mellitus: a single-center cohort study. Int. J. Mol. Sci. 24, 8885 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Kamrath, C. et al. Frequency of autoantibody-negative type 1 diabetes in children, adolescents, and young adults during the first wave of the COVID-19 pandemic in Germany. Diabetes Care 44, 1540–1546 (2021).

    Article  CAS  PubMed  Google Scholar 

  167. Zhou, L., Qu, H., Zhang, Q., Hu, J. & Shou, L. Case report: fulminant type 1 diabetes following paucisymptomatic SARS-CoV-2 infection during late pregnancy. Front. Endocrinol. 14, 1168927 (2023).

    Article  Google Scholar 

  168. Pan, Y., Zhong, X., Qiu, W., Zhao, F. & Yao, J. New-onset fulminant type 1 diabetes after SARS-CoV-2 infection. Diabetes Care 46, e140–e142 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Martinez, A. H., Hicks, K. A., Moorjani, T. P., Bell, J. & Lin, Y. A case of autoantibody negative pediatric diabetes mellitus with marked insulin resistance concomitant with COVID-19: a novel form of disease? J. Endocr. Soc. 5, A690–A691 (2021).

    Article  PubMed Central  Google Scholar 

  170. Hollstein, T. et al. Autoantibody-negative insulin-dependent diabetes mellitus after SARS-CoV-2 infection: a case report. Nat. Metab. 2, 1021–1024 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the team of the Laboratory of Virology ULR3610 and all their collaborators. The authors’ research was supported by Ministère de l’Education Nationale, de la Recherche et de la Technologie, Université de Lille, CHU Lille.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Hober.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Malin Flodström Tullberg and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

CoviDIAB project: https://covidiab.e-dendrite.com

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debuysschere, C., Nekoua, M.P., Alidjinou, E.K. et al. The relationship between SARS-CoV-2 infection and type 1 diabetes mellitus. Nat Rev Endocrinol (2024). https://doi.org/10.1038/s41574-024-01004-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41574-024-01004-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing