1400 results sorted by ID

2024/1174 (PDF) Last updated: 2024-07-20
Grafted Trees Bear Better Fruit: An Improved Multiple-Valued Plaintext-Checking Side-Channel Attack against Kyber
Jinnuo Li, Chi Cheng, Muyan Shen, Peng Chen, Qian Guo, Dongsheng Liu, Liji Wu, Jian Weng
Attacks and cryptanalysis

As a prominent category of side-channel attacks (SCAs), plaintext-checking (PC) oracle-based SCAs offer the advantages of generality and operational simplicity on a targeted device. At TCHES 2023, Rajendran et al. and Tanaka et al. independently proposed the multiple-valued (MV) PC oracle, significantly reducing the required number of queries (a.k.a., traces) in the PC oracle. However, in practice, when dealing with environmental noise or inaccuracies in the waveform classifier, they...

2024/1143 (PDF) Last updated: 2024-07-13
LR-OT: Leakage-Resilient Oblivious Transfer
Francesco Berti, Carmit Hazay, Itamar Levi
Cryptographic protocols

Oblivious Transfer (OT) is a fundamental cryptographic primitive, becoming a crucial component of a practical secure protocol. OT is typically implemented in software, and one way to accelerate its running time is by using hardware implementations. However, such implementations are vulnerable to side-channel attacks (SCAs). On the other hand, protecting interactive protocols against SCA is highly challenging because of their longer secrets (which include inputs and randomness), more...

2024/1125 (PDF) Last updated: 2024-07-10
Revisiting PACD-based Attacks on RSA-CRT
Guillaume Barbu, Laurent Grémy, Roch Lescuyer
Attacks and cryptanalysis

In this work, we use some recent developments in lattice-based cryptanalytic tools to revisit a fault attack on RSA-CRT signatures based on the Partial Approximate Common Divisor (PACD) problem. By reducing the PACD to a Hidden Number Problem (HNP) instance, we decrease the number of required faulted bits from 32 to 7 in the case of a 1024-bit RSA. We successfully apply the attack to RSA instances up to 8192-bit and present an enhanced analysis of the error-tolerance in the Bounded Distance...

2024/1107 (PDF) Last updated: 2024-07-15
Phase Modulation Side Channels: Jittery JTAG for On-Chip Voltage Measurements
Colin O'Flynn
Implementation

Measuring the fluctuations of the clock phase of a target was identified as a leakage source on early electromagnetic side-channel investigations. Despite this, only recently was directly measuring the clock phase (or jitter) of digital signals from a target connected to being a source of exploitable leakage. As the phase of a clock output will be related to signal propagation delay through the target, and this propagation delay is related to voltage, this means that most digital devices...

2024/1106 (PDF) Last updated: 2024-07-07
Masked Vector Sampling for HQC
Maxime Spyropoulos, David Vigilant, Fabrice Perion, Renaud Pacalet, Laurent Sauvage
Implementation

Anticipating the advent of large quantum computers, NIST started a worldwide competition in 2016 aiming to define the next cryptographic standards. HQC is one of these post-quantum schemes still in contention, with four others already in the process of being standardized. In 2022, Guo et al. introduced a timing attack that exploited an inconsistency in HQC rejection sampling function to recover its secret key in 866,000 calls to an oracle. The authors of HQC updated its specification by...

2024/1099 (PDF) Last updated: 2024-07-05
FHE-MENNs: Opportunities and Pitfalls for Accelerating Fully Homomorphic Private Inference with Multi-Exit Neural Networks
Lars Wolfgang Folkerts, Nektarios Georgios Tsoutsos
Applications

With concerns about data privacy growing in a connected world, cryptography researchers have focused on fully homomorphic encryption (FHE) for promising machine learning as a service solutions. Recent advancements have lowered the computational cost by several orders of magnitude, but the latency of fully homomorphic neural networks remains a barrier to adoption. This work proposes using multi-exit neural networks (MENNs) to accelerate the FHE inference. MENNs are network architectures that...

2024/1092 (PDF) Last updated: 2024-07-04
Fusion Channel Attack with POI Learning Encoder
Xinyao Li, Xiwen Ren, Ling Ning, Changhai Ou
Attacks and cryptanalysis

In order to challenge the security of cryptographic systems, Side-Channel Attacks exploit data leaks such as power consumption and electromagnetic emissions. Classic Side-Channel Attacks, which mainly focus on mono-channel data, fail to utilize the joint information of multi-channel data. However, previous studies of multi-channel attacks have often been limited in how they process and adapt to dynamic data. Furthermore, the different data types from various channels make it difficult to use...

2024/1070 (PDF) Last updated: 2024-07-01
Protecting cryptographic code against Spectre-RSB
Santiago Arranz Olmos, Gilles Barthe, Chitchanok Chuengsatiansup, Benjamin Grégoire, Vincent Laporte, Tiago Oliveira, Peter Schwabe, Yuval Yarom, Zhiyuan Zhang
Implementation

It is fundamental that executing cryptographic software must not leak secrets through side-channels. For software-visible side-channels, it was long believed that "constant-time" programming would be sufficient as a systematic countermeasure. However, this belief was shattered in 2018 by attacks exploiting speculative execution—so called Spectre attacks. Recent work shows that language support suffices to protect cryptographic code with minimal overhead against one class of such attacks,...

2024/1035 (PDF) Last updated: 2024-06-26
Reading It like an Open Book: Single-trace Blind Side-channel Attacks on Garbled Circuit Frameworks
Sirui Shen, Chenglu Jin
Attacks and cryptanalysis

Garbled circuits (GC) are a secure multiparty computation protocol that enables two parties to jointly compute a function using their private data without revealing it to each other. While garbled circuits are proven secure at the protocol level, implementations can still be vulnerable to side-channel attacks. Recently, side-channel analysis of GC implementations has garnered significant interest from researchers. We investigate popular open-source GC frameworks and discover that the AES...

2024/1025 (PDF) Last updated: 2024-06-25
Polynomial sharings on two secrets: Buy one, get one free
Paula Arnold, Sebastian Berndt, Thomas Eisenbarth, Maximilian Orlt
Implementation

While passive side-channel attacks and active fault attacks have been studied intensively in the last few decades, strong attackers combining these attacks have only been studied relatively recently. Due to its simplicity, most countermeasures against passive attacks are based on additive sharing. Unfortunately, extending these countermeasures against faults often leads to quite a significant performance penalty, either due to the use of expensive cryptographic operations or a large number...

2024/1019 (PDF) Last updated: 2024-06-24
Exploiting Clock-Slew Dependent Variability in CMOS Digital Circuits Towards Power and EM SCA Resilience
Archisman Ghosh, Md. Abdur Rahman, Debayan Das, Santosh Ghosh, Shreyas Sen
Applications

Mathematically secured cryptographic implementations leak critical information in terms of power, EM emanations, etc. Several circuit-level countermeasures are proposed to hinder side channel leakage at the source. Circuit-level countermeasures (e.g., IVR, STELLAR, WDDL, etc) are often preferred as they are generic and have low overhead. They either dither the voltage randomly or attenuate the meaningful signature at $V_{DD}$ port. Although any digital implementation has two generic ports,...

2024/1009 (PDF) Last updated: 2024-06-21
Improved Reductions from Noisy to Bounded and Probing Leakages via Hockey-Stick Divergences
Maciej Obremski, João Ribeiro, Lawrence Roy, François-Xavier Standaert, Daniele Venturi
Attacks and cryptanalysis

There exists a mismatch between the theory and practice of cryptography in the presence of leakage. On the theoretical front, the bounded leakage model, where the adversary learns bounded-length but noiseless information about secret components, and the random probing model, where the adversary learns some internal values of a leaking implementation with some probability, are convenient abstractions to analyze the security of numerous designs. On the practical front, side-channel attacks...

2024/984 (PDF) Last updated: 2024-07-01
Side-Channel and Fault Resistant ASCON Implementation: A Detailed Hardware Evaluation (Extended Version)
Aneesh Kandi, Anubhab Baksi, Peizhou Gan, Sylvain Guilley, Tomáš Gerlich, Jakub Breier, Anupam Chattopadhyay, Ritu Ranjan Shrivastwa, Zdeněk Martinásek, Shivam Bhasin
Implementation

In this work, we present various hardware implementations for the lightweight cipher ASCON, which was recently selected as the winner of the NIST organized Lightweight Cryptography (LWC) competition. We cover encryption + tag generation and decryption + tag verification for the ASCON AEAD and also the ASCON hash function. On top of the usual (unprotected) implementation, we present side-channel protection (threshold countermeasure) and triplication/majority-based fault protection. To the...

2024/967 (PDF) Last updated: 2024-07-08
Consolidated Linear Masking (CLM): Generalized Randomized Isomorphic Representations, Powerful Degrees of Freedom and Low(er)-cost
Itamar Levi, Osnat Keren
Implementation

Masking is a widely adopted countermeasure against side-channel analysis (SCA) that protects cryptographic implementations from information leakage. However, current masking schemes often incur significant overhead in terms of electronic cost. RAMBAM, a recently proposed masking technique that fits elegantly with the AES algorithm, offers ultra-low latency/area by utilizing redundant representations of finite field elements. This paper presents a comprehensive generalization of RAMBAM and...

2024/966 (PDF) Last updated: 2024-06-15
Diffuse Some Noise: Diffusion Models for Measurement Noise Removal in Side-channel Analysis
Sengim Karayalcin, Guilherme Perin, Stjepan Picek
Attacks and cryptanalysis

Resilience against side-channel attacks is an important consideration for cryptographic implementations deployed in devices with physical access to the device. However, noise in side-channel measurements has a significant impact on the complexity of these attacks, especially when an implementation is protected with masking. Therefore, it is important to assess the ability of an attacker to deal with noise. While some previous works have considered approaches to remove (some) noise from...

2024/913 (PDF) Last updated: 2024-06-08
SoK: Model Reverse Engineering Threats for Neural Network Hardware
Seetal Potluri, Farinaz Koushanfar
Implementation

There has been significant progress over the past seven years in model reverse engineering (RE) for neural network (NN) hardware. Although there has been systematization of knowledge (SoK) in an overall sense, however, the treatment from the hardware perspective has been far from adequate. To bridge this gap, this paper systematically categorizes the types of NN hardware used prevalently by the industry/academia, and also the model RE attacks/defenses published in each category. Further, we...

2024/906 (PDF) Last updated: 2024-06-06
Are Your Keys Protected? Time will Tell
Yoav Ben-Dov, Liron David, Moni Naor, Elad Tzalik
Foundations

Side channel attacks, and in particular timing attacks, are a fundamental obstacle to obtaining secure implementation of algorithms and cryptographic protocols, and have been widely researched for decades. While cryptographic definitions for the security of cryptographic systems have been well established for decades, none of these accepted definitions take into account the running time information leaked from executing the system. In this work, we give the foundation of new cryptographic...

2024/891 (PDF) Last updated: 2024-06-08
Glitch-Stopping Circuits: Hardware Secure Masking without Registers
Zhenda Zhang, Svetla Nikova, Ventzislav Nikov
Implementation

Masking is one of the most popular countermeasures to protect implementations against power and electromagnetic side channel attacks, because it offers provable security. Masking has been shown secure against d-threshold probing adversaries by Ishai et al. at CRYPTO'03, but this adversary's model doesn't consider any physical hardware defaults and thus such masking schemes were shown to be still vulnerable when implemented as hardware circuits. To addressed these limitations glitch-extended...

2024/833 (PDF) Last updated: 2024-05-28
INDIANA - Verifying (Random) Probing Security through Indistinguishability Analysis
Christof Beierle, Jakob Feldtkeller, Anna Guinet, Tim Güneysu, Gregor Leander, Jan Richter-Brockmann, Pascal Sasdrich
Implementation

Despite masking being a prevalent protection against passive side-channel attacks, implementing it securely in hardware remains a manual, challenging, and error-prone process. This paper introduces INDIANA, a comprehensive security verification tool for hardware masking. It provides a hardware verification framework, enabling a complete analysis of simulation-based security in the glitch-extended probing model, with cycle-accurate estimations for leakage probabilities in the random...

2024/810 (PDF) Last updated: 2024-05-24
The Perils of Limited Key Reuse: Adaptive and Parallel Mismatch Attacks with Post-processing Against Kyber
Qian Guo, Erik Mårtensson, Adrian Åström
Attacks and cryptanalysis

In this paper, we study the robustness of Kyber, the Learning With Errors (LWE)-based Key Encapsulation Mechanism (KEM) chosen for standardization by NIST, against key mismatch attacks. We demonstrate that Kyber's security levels can be compromised with a few mismatch queries by striking a balance between the parallelization level and the cost of lattice reduction for post-processing. This highlights the imperative need to strictly prohibit key reuse in CPA-secure Kyber. We further...

2024/775 (PDF) Last updated: 2024-05-20
Spec-o-Scope: Cache Probing at Cache Speed
Gal Horowitz, Eyal Ronen, Yuval Yarom

Over the last two decades, microarchitectural side channels have been the focus of a large body of research on the development of new attack techniques, exploiting them to attack various classes of targets and designing mitigations. One line of work focuses on increasing the speed of the attacks, achieving higher levels of temporal resolution that can allow attackers to learn finer-grained information. The most recent addition to this line of work is Prime+Scope [CCS '21], which only...

2024/757 (PDF) Last updated: 2024-05-27
Formal Definition and Verification for Combined Random Fault and Random Probing Security
Sonia Belaid, Jakob Feldtkeller, Tim Güneysu, Anna Guinet, Jan Richter-Brockmann, Matthieu Rivain, Pascal Sasdrich, Abdul Rahman Taleb
Implementation

In our highly digitalized world, an adversary is not constrained to purely digital attacks but can monitor or influence the physical execution environment of a target computing device. Such side-channel or fault-injection analysis poses a significant threat to otherwise secure cryptographic implementations. Hence, it is important to consider additional adversarial capabilities when analyzing the security of cryptographic implementations besides the default black-box model. For side-channel...

2024/755 (PDF) Last updated: 2024-05-17
Efficient Second-Order Masked Software Implementations of Ascon in Theory and Practice
Barbara Gigerl, Florian Mendel, Martin Schläffer, Robert Primas
Implementation

In this paper, we present efficient protected software implementations of the authenticated cipher Ascon, the recently announced winner of the NIST standardization process for lightweight cryptography. Our implementations target theoretical and practical security against second-order power analysis attacks. First, we propose an efficient second-order extension of a previously presented first-order masking of the Keccak S-box that does not require online randomness. The extension...

2024/709 (PDF) Last updated: 2024-05-08
Masked Computation the Floor Function and its Application to the FALCON Signature
Justine Paillet, Pierre-Augustin Berthet, Cédric Tavernier
Public-key cryptography

FALCON is candidate for standardization of the new Post Quantum Cryptography (PQC) primitives by the National Institute of Standards and Technology (NIST). However, it remains a challenge to define efficient countermeasures against side-channel attacks (SCA) for this algorithm. FALCON is a lattice-based signature that relies on rational numbers which is unusual in the cryptography field. While recent work proposed a solution to mask the addition and the multiplication, some roadblocks...

2024/708 (PDF) Last updated: 2024-05-07
Automated Generation of Fault-Resistant Circuits
Nicolai Müller, Amir Moradi
Implementation

Fault Injection (FI) attacks, which involve intentionally introducing faults into a system to cause it to behave in an unintended manner, are widely recognized and pose a significant threat to the security of cryptographic primitives implemented in hardware, making fault tolerance an increasingly critical concern. However, protecting cryptographic hardware primitives securely and efficiently, even with well-established and documented methods such as redundant computation, can be a...

2024/690 (PDF) Last updated: 2024-05-06
LPN-based Attacks in the White-box Setting
Alex Charlès, Aleksei Udovenko
Attacks and cryptanalysis

In white-box cryptography, early protection techniques have fallen to the automated Differential Computation Analysis attack (DCA), leading to new countermeasures and attacks. A standard side-channel countermeasure, Ishai-Sahai-Wagner's masking scheme (ISW, CRYPTO 2003) prevents Differential Computation Analysis but was shown to be vulnerable in the white-box context to the Linear Decoding Analysis attack (LDA). However, recent quadratic and cubic masking schemes by Biryukov-Udovenko...

2024/670 (PDF) Last updated: 2024-05-02
Secure Implementation of SRAM PUF for Private Key Generation
Raja Adhithan Radhakrishnan
Implementation

This paper endeavors to securely implement a Physical Unclonable Function (PUF) for private data generation within Field-Programmable Gate Arrays (FPGAs). SRAM PUFs are commonly utilized due to their use of memory devices for generating secret data, particularly in resource constrained devices. However, their reliance on memory access poses side-channel threats such as data remanence decay and memory-based attacks, and the time required to generate secret data is significant. To address...

2024/621 (PDF) Last updated: 2024-04-22
How to Lose Some Weight - A Practical Template Syndrome Decoding Attack
Sebastian Bitzer, Jeroen Delvaux, Elena Kirshanova, Sebastian Maaßen, Alexander May, Antonia Wachter-Zeh
Attacks and cryptanalysis

We study the hardness of the Syndrome Decoding problem, the base of most code-based cryptographic schemes, such as Classic McEliece, in the presence of side-channel information. We use ChipWhisperer equipment to perform a template attack on Classic McEliece running on an ARM Cortex-M4, and accurately classify the Hamming weights of consecutive 32-bit blocks of the secret error vector. With these weights at hand, we optimize Information Set Decoding algorithms. Technically, we show how to...

2024/589 (PDF) Last updated: 2024-04-16
Blind-Folded: Simple Power Analysis Attacks using Data with a Single Trace and no Training
Xunyue Hu, Quentin L. Meunier, Emmanuelle Encrenaz
Attacks and cryptanalysis

Side-Channel Attacks target the recovery of key material in cryptographic implementations by measuring physical quantities such as power consumption during the execution of a program. Simple Power Attacks consist in deducing secret information from a trace using a single or a few samples, as opposed to differential attacks which require many traces. Software cryptographic implementations now all contain a data-independent execution path, but often do not consider variations in power...

2024/574 (PDF) Last updated: 2024-04-15
PoMMES: Prevention of Micro-architectural Leakages in Masked Embedded Software
Jannik Zeitschner, Amir Moradi
Implementation

Software solutions to address computational challenges are ubiquitous in our daily lives. One specific application area where software is often used is in embedded systems, which, like other digital electronic devices, are vulnerable to side-channel analysis attacks. Although masking is the most common countermeasure and provides a solid theoretical foundation for ensuring security, recent research has revealed a crucial gap between theoretical and real-world security. This shortcoming stems...

2024/558 (PDF) Last updated: 2024-04-10
Scoring the predictions: a way to improve profiling side-channel attacks
Damien Robissout, Lilian Bossuet, Amaury Habrard
Attacks and cryptanalysis

Side-channel analysis is an important part of the security evaluations of hardware components and more specifically of those that include cryptographic algorithms. Profiling attacks are among the most powerful attacks as they assume the attacker has access to a clone device of the one under attack. Using the clone device allows the attacker to make a profile of physical leakages linked to the execution of algorithms. This work focuses on the characteristics of this profile and the...

2024/556 (PDF) Last updated: 2024-05-22
Menhir: An Oblivious Database with Protection against Access and Volume Pattern Leakage
Leonie Reichert, Gowri R Chandran, Phillipp Schoppmann, Thomas Schneider, Björn Scheuermann
Applications

Analyzing user data while protecting the privacy of individuals remains a big challenge. Trusted execution environments (TEEs) are a possible solution as they protect processes and Virtual Machines (VMs) against malicious hosts. However, TEEs can leak access patterns to code and to the data being processed. Furthermore, when data is stored in a TEE database, the data volume required to answer a query is another unwanted side channel that contains sensitive information. Both types of...

2024/533 (PDF) Last updated: 2024-04-05
HyCaMi: High-Level Synthesis for Cache Side-Channel Mitigation
Heiko Mantel, Joachim Schmidt, Thomas Schneider, Maximilian Stillger, Tim Weißmantel, Hossein Yalame
Attacks and cryptanalysis

Cache side-channels are a major threat to cryptographic implementations, particularly block ciphers. Traditional manual hardening methods transform block ciphers into Boolean circuits, a practice refined since the late 90s. The only existing automatic approach based on Boolean circuits achieves security but suffers from performance issues. This paper examines the use of Lookup Tables (LUTs) for automatic hardening of block ciphers against cache side-channel attacks. We present a novel method...

2024/512 (PDF) Last updated: 2024-04-14
Single Trace is All It Takes: Efficient Side-channel Attack on Dilithium
Zehua Qiao, Yuejun Liu, Yongbin Zhou, Yuhan Zhao, Shuyi Chen
Attacks and cryptanalysis

As we enter 2024, the post-quantum cryptographic algorithm Dilithium, which emerged from the National Institute of Standards and Technology post-quantum cryptography competition, has now reached the deployment stage. This paper focuses on the practical security of Dilithium. We performed practical attacks on Dilithium2 on an STM32F4 platform. Our results indicate that an attack can be executed with just two signatures within five minutes, with a single signature offering a 60% probability of...

2024/500 (PDF) Last updated: 2024-03-28
Side Channel Resistant Sphincs+
Scott Fluhrer
Implementation

Here is a potential way to create a SLH-DSA-like\cite{DraftFIPS205} key generation/signer that aspires to be resistant to DPA side channel attacks. We say that it is “SLH-DSA-like”, because it does not follow the FIPS 205 method of generating signatures (in particular, it does not have the same mapping from private key, messages, opt\_rand to signatures), however it does generate public keys and signatures that are compatible with the standard signature verification method, and with the...

2024/440 (PDF) Last updated: 2024-06-10
Secret and Shared Keys Recovery on Hamming Quasi-Cyclic with SASCA
Chloé Baïsse, Antoine Moran, Guillaume Goy, Julien Maillard, Nicolas Aragon, Philippe Gaborit, Maxime Lecomte, Antoine Loiseau
Attacks and cryptanalysis

Soft Analytical Side Channel Attacks (SASCA) are a powerful family of Side Channel Attacks (SCA) that allows the recovery of secret values with only a small number of traces. Their effectiveness lies in the Belief Propagation (BP) algorithm, which enables efficient computation of the marginal distributions of intermediate values. Post-quantum schemes such as Kyber, and more recently, Hamming Quasi-Cyclic (HQC), have been targets of SASCA. Previous SASCA on HQC focused on Reed-Solomon (RS)...

2024/439 (PDF) Last updated: 2024-03-14
Threshold implementations of cryptographic functions between finite Abelian groups
Enrico Piccione
Implementation

The threshold implementation technique has been proposed in 2006 by Nikova et al. as a countermeasure to mitigate cryptographic side-channel attacks on hardware implementations when the effect of glitches is taken into account. This technique is based on Boolean sharing (also called masking) and it was developed for securing symmetric ciphers such as AES. In 2023, Piccione et al. proposed a general construction of threshold implementations that is universal for S-boxes that are bijective...

2024/431 (PDF) Last updated: 2024-03-13
Generalized Feistel Ciphers for Efficient Prime Field Masking - Full Version
Lorenzo Grassi, Loïc Masure, Pierrick Méaux, Thorben Moos, François-Xavier Standaert
Secret-key cryptography

A recent work from Eurocrypt 2023 suggests that prime-field masking has excellent potential to improve the efficiency vs. security tradeoff of masked implementations against side-channel attacks, especially in contexts where physical leakages show low noise. We pick up on the main open challenge that this seed result leads to, namely the design of an optimized prime cipher able to take advantage of this potential. Given the interest of tweakable block ciphers with cheap inverses in many...

2024/428 (PDF) Last updated: 2024-06-18
SNOW-SCA: ML-assisted Side-Channel Attack on SNOW-V
Harshit Saurabh, Anupam Golder, Samarth Shivakumar Titti, Suparna Kundu, Chaoyun Li, Angshuman Karmakar, Debayan Das
Attacks and cryptanalysis

This paper presents SNOW-SCA, the first power side-channel analysis (SCA) attack of a 5G mobile communication security standard candidate, SNOW-V, running on a 32-bit ARM Cortex-M4 microcontroller. First, we perform a generic known-key correlation (KKC) analysis to identify the leakage points. Next, a correlation power analysis (CPA) attack is performed, which reduces the attack complexity to two key guesses for each key byte. The correct secret key is then uniquely identified utilizing...

2024/427 (PDF) Last updated: 2024-03-12
A Cautionary Note: Side-Channel Leakage Implications of Deterministic Signature Schemes
Hermann Seuschek, Johann Heyszl, Fabrizio De Santis

Two recent proposals by Bernstein and Pornin emphasize the use of deterministic signatures in DSA and its elliptic curve-based variants. Deterministic signatures derive the required ephemeral key value in a deterministic manner from the message to be signed and the secret key instead of using random number generators. The goal is to prevent severe security issues, such as the straight-forward secret key recovery from low quality random numbers. Recent developments have raised skepticism...

2024/423 (PDF) Last updated: 2024-06-20
Plan your defense: A comparative analysis of leakage detection methods on RISC-V cores
Konstantina Miteloudi, Asmita Adhikary, Niels van Drueten, Lejla Batina, Ileana Buhan
Applications

Hardening microprocessors against side-channel attacks is a critical aspect of ensuring their security. A key step in this process is identifying and mitigating “leaky" hardware modules, which leak information during the execution of cryptographic algorithms. In this paper, we explore how different leakage detection methods, the Side-channel Vulnerability Factor (SVF) and the Test Vector Leakage Assessment (TVLA), contribute to hardening of microprocessors. We conduct experiments on two...

2024/365 (PDF) Last updated: 2024-06-26
Combined Threshold Implementation
Jakob Feldtkeller, Jan Richter-Brockmann, Pascal Sasdrich, Tim Güneysu
Implementation

Physical security is an important aspect of devices for which an adversary can manipulate the physical execution environment. Recently, more and more attention has been directed towards a security model that combines the capabilities of passive and active physical attacks, i.e., an adversary that performs fault-injection and side-channel analysis at the same time. Implementing countermeasures against such a powerful adversary is not only costly but also requires the skillful combination of...

2024/345 (PDF) Last updated: 2024-02-27
An Efficient Adaptive Attack Against FESTA
Guoqing Zhou, Maozhi Xu
Attacks and cryptanalysis

At EUROCRYPT’23, Castryck and Decru, Maino et al., and Robert present efficient attacks against supersingular isogeny Diffie-Hellman key exchange protocol (SIDH). Drawing inspiration from these attacks, Andrea Basso, Luciano Maino, and Giacomo Pope introduce FESTA, an isogeny-based trapdoor function, along with a corresponding IND-CCA secure public key encryption (PKE) protocol at ASIACRYPT’23. FESTA incorporates either a diagonal or circulant matrix into the secret key to mask torsion...

2024/339 (PDF) Last updated: 2024-03-04
From Random Probing to Noisy Leakages Without Field-Size Dependence
Gianluca Brian, Stefan Dziembowski, Sebastian Faust
Foundations

Side channel attacks are devastating attacks targeting cryptographic implementations. To protect against these attacks, various countermeasures have been proposed -- in particular, the so-called masking scheme. Masking schemes work by hiding sensitive information via secret sharing all intermediate values that occur during the evaluation of a cryptographic implementation. Over the last decade, there has been broad interest in designing and formally analyzing such schemes. The random probing...

2024/309 (PDF) Last updated: 2024-02-23
NiLoPher: Breaking a Modern SAT-Hardened Logic-Locking Scheme via Power Analysis Attack
Prithwish Basu Roy, Johann Knechtel, Akashdeep Saha, Saideep Sreekumar, Likhitha Mankali, Mohammed Nabeel, Debdeep Mukhopadhyay, Ramesh Karri, Ozgur Sinanoglu
Attacks and cryptanalysis

LoPher brings, for the first time, cryptographic security promises to the field of logic locking in a bid to break the game of cat-and-mouse seen in logic locking. Toward this end, LoPher embeds the circuitry to lock within multiple rounds of a block cipher, by carefully configuring all the S-Boxes. To realize general Boolean functionalities and to support varying interconnect topologies, LoPher also introduces additional layers of MUXes between S-Boxes and the permutation operations. The...

2024/299 (PDF) Last updated: 2024-03-27
Divide and Surrender: Exploiting Variable Division Instruction Timing in HQC Key Recovery Attacks
Robin Leander Schröder, Stefan Gast, Qian Guo
Attacks and cryptanalysis

We uncover a critical side-channel vulnerability in the Hamming Quasi-Cyclic (HQC) round 4 optimized implementation arising due to the use of the modulo operator. In some cases, compilers optimize uses of the modulo operator with compile-time known divisors into constant-time Barrett reductions. However, this optimization is not guaranteed: for example, when a modulo operation is used in a loop the compiler may emit division (div) instructions which have variable execution time depending on...

2024/296 (PDF) Last updated: 2024-06-06
Attacking ECDSA with Nonce Leakage by Lattice Sieving: Bridging the Gap with Fourier Analysis-based Attacks
Yiming Gao, Jinghui Wang, Honggang Hu, Binang He
Attacks and cryptanalysis

The Hidden Number Problem (HNP) has found extensive applications in side-channel attacks against cryptographic schemes, such as ECDSA and Diffie-Hellman. There are two primary algorithmic approaches to solving the HNP: lattice-based attacks and Fourier analysis-based attacks. Lattice-based attacks exhibit better efficiency and require fewer samples when sufficiently long substrings of the nonces are known. However, they face significant challenges when only a small fraction of the nonce is...

2024/287 (PDF) Last updated: 2024-02-20
CAPABARA: A Combined Attack on CAPA
Dilara Toprakhisar, Svetla Nikova, Ventzislav Nikov
Attacks and cryptanalysis

Physical attacks pose a substantial threat to the secure implementation of cryptographic algorithms. While considerable research efforts are dedicated to protecting against passive physical attacks (e.g., side-channel analysis (SCA)), the landscape of protection against other types of physical attacks remains a challenge. Fault attacks (FA), though attracting growing attention in research, still lack the prevalence of provably secure designs when compared to SCA. The realm of combined...

2024/277 (PDF) Last updated: 2024-02-19
Fault Attacks on UOV and Rainbow
Juliane Krämer, Mirjam Loiero
Attacks and cryptanalysis

Multivariate cryptography is one of the main candidates for creating post-quantum public key cryptosystems. Especially in the area of digital signatures, there exist many practical and secure multivariate schemes. The signature schemes UOV and Rainbow are two of the most promising and best studied multivariate schemes which have proven secure for more than a decade. However, so far the security of multivariate signature schemes towards physical attacks has not been appropriately assessed....

2024/199 (PDF) Last updated: 2024-05-31
Formal Security Proofs via Doeblin Coefficients: Optimal Side-channel Factorization from Noisy Leakage to Random Probing
Julien Béguinot, Wei Cheng, Sylvain Guilley, Olivier Rioul
Implementation

Masking is one of the most popular countermeasures to side- channel attacks, because it can offer provable security. However, depend- ing on the adversary’s model, useful security guarantees can be hard to provide. At first, masking has been shown secure against t-threshold probing adversaries by Ishai et al. at Crypto’03. It has then been shown secure in the more generic random probing model by Duc et al. at Euro- crypt’14. Prouff and Rivain have introduced the noisy leakage model...

2024/186 (PDF) Last updated: 2024-06-30
RAD-FS: Remote Timing and Power SCA Security in DVFS-Augmented Ultra-Low-Power Embedded Systems
Daniel Dobkin, Nimrod Cever, Itamar Levi
Attacks and cryptanalysis

High-performance crypto-engines have become crucial components in modern System-On-Chip (SoC) architectures across platforms, from servers to edge-IoTs’. Alas, their secure operation faces a significant obstacle caused by information-leakage through various side-channels. Adversaries exploit statistical-analysis techniques on measured (e.g.,) power and timing signatures generated during (e.g.,) encryption, extracting secrets. Mathematical countermeasures against such attacks often impose...

2024/170 (PDF) Last updated: 2024-02-05
Train Wisely: Multifidelity Bayesian Optimization Hyperparameter Tuning in Side-Channel Analysis
Trevor Yap Hong Eng, Shivam Bhasin, Léo Weissbart
Implementation

Side-Channel Analysis (SCA) is critical in evaluating the security of cryptographic implementations. The search for hyperparameters poses a significant challenge, especially when resources are limited. In this work, we explore the efficacy of a multifidelity optimization technique known as BOHB in SCA. In addition, we proposed a new objective function called $ge_{+ntge}$, which could be incorporated into any Bayesian Optimization used in SCA. We show the capabilities of both BOHB and...

2024/169 (PDF) Last updated: 2024-02-05
Machine Learning based Blind Side-Channel Attacks on PQC-based KEMs - A Case Study of Kyber KEM
Prasanna Ravi, Dirmanto Jap, Shivam Bhasin, Anupam Chattopadhyay
Attacks and cryptanalysis

Kyber KEM, the NIST selected PQC standard for Public Key Encryption and Key Encapsulation Mechanisms (KEMs) has been subjected to a variety of side-channel attacks, through the course of the NIST PQC standardization process. However, all these attacks targeting the decapsulation procedure of Kyber KEM either require knowledge of the ciphertexts or require to control the value of ciphertexts for key recovery. However, there are no known attacks in a blind setting, where the attacker does not...

2024/167 (PDF) Last updated: 2024-02-05
Creating from Noise: Trace Generations Using Diffusion Model for Side-Channel Attack
Trevor Yap, Dirmanto Jap
Implementation

In side-channel analysis (SCA), the success of an attack is largely dependent on the dataset sizes and the number of instances in each class. The generation of synthetic traces can help to improve attacks like profiling attacks. However, manually creating synthetic traces from actual traces is arduous. Therefore, automating this process of creating artificial traces is much needed. Recently, diffusion models have gained much recognition after beating another generative model known as...

2024/149 (PDF) Last updated: 2024-02-01
Evict+Spec+Time: Exploiting Out-of-Order Execution to Improve Cache-Timing Attacks
Shing Hing William Cheng, Chitchanok Chuengsatiansup, Daniel Genkin, Dallas McNeil, Toby Murray, Yuval Yarom, Zhiyuan Zhang
Attacks and cryptanalysis

Speculative out-of-order execution is a strategy of masking execution latency by allowing younger instructions to execute before older instructions. While originally considered to be innocuous, speculative out-of-order execution was brought into the spotlight with the 2018 publication of the Spectre and Meltdown attacks. These attacks demonstrated that microarchitectural side channels can leak sensitive data accessed by speculatively executed instructions that are not part of the normal...

2024/147 (PDF) Last updated: 2024-07-13
Prime Masking vs. Faults - Exponential Security Amplification against Selected Classes of Attacks
Thorben Moos, Sayandeep Saha, François-Xavier Standaert
Implementation

Fault injection attacks are a serious concern for cryptographic hardware. Adversaries may extract sensitive information from the faulty output that is produced by a cryptographic circuit after actively disturbing its computation. Alternatively, the information whether an output would have been faulty, even if it is withheld from being released, may be exploited. The former class of attacks, which requires the collection of faulty outputs, such as Differential Fault Analysis (DFA), then...

2024/138 (PDF) Last updated: 2024-01-31
Correction Fault Attacks on Randomized CRYSTALS-Dilithium
Elisabeth Krahmer, Peter Pessl, Georg Land, Tim Güneysu
Attacks and cryptanalysis

After NIST’s selection of Dilithium as the primary future standard for quantum-secure digital signatures, increased efforts to understand its implementation security properties are required to enable widespread adoption on embedded devices. Concretely, there are still many open questions regarding the susceptibility of Dilithium to fault attacks. This is especially the case for Dilithium’s randomized (or hedged) signing mode, which, likely due to devastating implementation attacks on the...

2024/135 (PDF) Last updated: 2024-01-31
A Closer Look at the Belief Propagation Algorithm in Side-Channel-Assisted Chosen-Ciphertext Attacks
Kexin Qiao, Siwei Sun, Zhaoyang Wang, Zehan Wu, Junjie Cheng, An Wang, Liehuang Zhu
Attacks and cryptanalysis

The implementation security of post-quantum cryptography (PQC) algorithms has emerged as a critical concern with the PQC standardization process reaching its end. In a side-channel-assisted chosen-ciphertext attack, the attacker builds linear inequalities on secret key components and uses the belief propagation (BP) algorithm to solve. The number of inequalities leverages the query complexity of the attack, so the fewer the better. In this paper, we use the PQC standard algorithm Kyber512 as...

2024/130 (PDF) Last updated: 2024-01-30
HADES: Automated Hardware Design Exploration for Cryptographic Primitives
Fabian Buschkowski, Georg Land, Jan Richter-Brockmann, Pascal Sasdrich, Tim Güneysu
Implementation

While formal constructions for cryptographic schemes have steadily evolved and emerged over the past decades, the design and implementation of efficient and secure hardware instances is still a mostly manual, tedious, and intuition-driven process. With the increasing complexity of modern cryptography, e.g., Post-Quantum Cryptography (PQC) schemes, and consideration of physical implementation attacks, e.g., Side-Channel Analysis (SCA), the design space often grows exorbitantly without...

2024/124 (PDF) Last updated: 2024-07-23
Perceived Information Revisited II: Information-Theoretical Analysis of Deep-Learning Based Side-Channel Attacks
Akira Ito, Rei Ueno, Naofumi Homma
Attacks and cryptanalysis

Previous studies on deep-learning-based side-channel attacks (DL-SCAs) have shown that traditional performance evaluation metrics commonly used in DL, like accuracy and F1 score, are not effective in evaluating DL-SCA performance. Therefore, some previous studies have proposed new alternative metrics for evaluating the performance of DL-SCAs. Notably, perceived information (PI) and effective perceived information (EPI) are major metrics based on information theory. While it has been...

2024/114 (PDF) Last updated: 2024-01-26
Mask Conversions for d+1 shares in Hardware, with Application to Lattice-based PQC
Quinten Norga, Jan-Pieter D'Anvers, Suparna Kundu, Ingrid Verbauwhede
Implementation

The conversion between arithmetic and Boolean mask representations (A2B & B2A) is a crucial component for side-channel resistant implementations of lattice-based cryptography. In this paper, we present a first- and high-order masked, unified hardware implementation which can perform both A2B & B2A conversions. We optimize the operation on several layers of abstraction, applicable to any protection order. First, we propose novel higher-order algorithms for the secure addition and B2A...

2024/111 (PDF) Last updated: 2024-01-25
A Novel Power Analysis Attack against CRYSTALS-Dilithium Implementation
Yong Liu, Yuejun Liu, Yongbin Zhou, Yiwen Gao, Zehua Qiao, Huaxin Wang
Attacks and cryptanalysis

Post-Quantum Cryptography (PQC) was proposed due to the potential threats quantum computer attacks against conventional public key cryptosystems, and four PQC algorithms besides CRYSTALS-Dilithium (Dilithium for short) have so far been selected for NIST standardization. However, the selected algorithms are still vulnerable to side-channel attacks in practice, and their physical security need to be further evaluated. This study introduces two efficient power analysis attacks, the optimized...

2024/072 (PDF) Last updated: 2024-04-17
1/0 Shades of UC: Photonic Side-Channel Analysis of Universal Circuits
Dev M. Mehta, Mohammad Hashemi, Domenic Forte, Shahin Tajik, Fatemeh Ganji
Attacks and cryptanalysis

A universal circuit (UC) can be thought of as a programmable circuit that can simulate any circuit up to a certain size by specifying its secret configuration bits. UCs have been incorporated into various applications, such as private function evaluation (PFE). Recently, studies have attempted to formalize the concept of semiconductor intellectual property (IP) protection in the context of UCs. This is despite the observations made in theory and practice that, in reality, the adversary may...

2024/071 (PDF) Last updated: 2024-01-17
Too Hot To Be True: Temperature Calibration for Higher Confidence in NN-assisted Side-channel Analysis
Seyedmohammad Nouraniboosjin, Fatemeh Ganji
Attacks and cryptanalysis

The past years have witnessed a considerable increase in research efforts put into neural network-assisted profiled side-channel analysis (SCA). Studies have also identified challenges, e.g., closing the gap between metrics for machine learning (ML) classification and side-channel attack evaluation. In fact, in the context of NN-assisted SCA, the NN’s output distribution forms the basis for successful key recovery. In this respect, related work has covered various aspects of integrating...

2024/070 (PDF) Last updated: 2024-06-10
Hints from Hertz: Dynamic Frequency Scaling Side-Channel Analysis of Number Theoretic Transform in Lattice-Based KEMs
Tianrun Yu, Chi Cheng, Zilong Yang, Yingchen Wang, Yanbin Pan, Jian Weng
Attacks and cryptanalysis

Number Theoretic Transform (NTT) has been widely used in accelerating computations in lattice-based cryptography. However, attackers can potentially launch power analysis targeting NTT because it is usually the most time-consuming part of the implementation. This extended time frame provides a natural window of opportunity for attackers. In this paper, we investigate the first CPU frequency leakage (Hertzbleed-like) attacks against NTT in lattice-based KEMs. Our key observation is that...

2024/066 (PDF) Last updated: 2024-07-16
Exploiting the Central Reduction in Lattice-Based Cryptography
Tolun Tosun, Amir Moradi, Erkay Savas
Attacks and cryptanalysis

This paper questions the side-channel security of central reduction technique, which is widely adapted in efficient implementations of Lattice-Based Cryptography (LBC). We show that the central reduction leads to a vulnerability by creating a strong dependency between the power consumption and the sign of sensitive intermediate values. We exploit this dependency by introducing the novel absolute value prediction function, which can be employed in higher-order non-profiled multi-query...

2024/063 Last updated: 2024-03-04
A Study of Soft Analytical Side-Channel Attacks on Secure Hash Algorithms
Julien Maillard, Thomas Hiscock, Maxime Lecomte, Christophe Clavier
Attacks and cryptanalysis

Hashing algorithms are one-way functions that are used in cryptographic protocols as Pseudo Random Functions (PRF), to assess data integrity or to create a Hash-based Message Authentication Code (HMAC). In many cryptographic constructions, secret data is processed with hashing functions. In these cases, recovering the input given to the hashing algorithm allows retrieving secret data. In this paper, we investigate the application of Soft Analytical Side-Channel Attacks (SASCA), based on a...

2024/060 (PDF) Last updated: 2024-01-15
The Insecurity of Masked Comparisons: SCAs on ML-KEM’s FO-Transform
Julius Hermelink, Kai-Chun Ning, Emanuele Strieder
Attacks and cryptanalysis

NIST has released the draft standard for ML-KEM, and ML-KEM is actively used in several widely-distributed applications. Thus, the wide-spread use of ML-KEM in the embedded worlds has to be expected in the near future. This makes security against side-channel attacks a pressing matter. Several side-channel attacks have previously been proposed, and one line of research have been attacks against the comparison step of the FO-transform. These attacks construct a decryption failure oracle...

2024/049 (PDF) Last updated: 2024-01-15
CL-SCA: Leveraging Contrastive Learning for Profiled Side-Channel Analysis
Annv Liu, An Wang, Shaofei Sun, Congming Wei, Yaoling Ding, Yongjuan Wang, Liehuang Zhu
Attacks and cryptanalysis

Side-channel analysis based on machine learning, especially neural networks, has gained significant attention in recent years. However, many existing methods still suffer from certain limitations. Despite the inherent capability of neural networks to extract features, there remains a risk of extracting irrelevant information. The heavy reliance on profiled traces makes it challenging to adapt to remote attack scenarios with limited profiled traces. Besides, attack traces also contain...

2024/045 (PDF) Last updated: 2024-01-11
A Low-Latency High-Order Arithmetic to Boolean Masking Conversion
Jiangxue Liu, Cankun Zhao, Shuohang Peng, Bohan Yang, Hang Zhao, Xiangdong Han, Min Zhu, Shaojun Wei, Leibo Liu
Implementation

Masking, an effective countermeasure against side-channel attacks, is commonly applied in modern cryptographic implementations. Considering cryptographic algorithms that utilize both Boolean and arithmetic masking, the conversion algorithm between arithmetic masking and Boolean masking is required. Conventional high-order arithmetic masking to Boolean masking conversion algorithms based on Boolean circuits suffer from performance overhead, especially in terms of hardware implementation. In...

2024/036 (PDF) Last updated: 2024-01-09
Blink: Breaking Lattice-Based Schemes Implemented in Parallel with Chosen-Ciphertext Attack
Jian Wang, Weiqiong Cao, Hua Chen, Haoyuan Li
Attacks and cryptanalysis

As the message recovery-based attack poses a serious threat to lattice-based schemes, we conducted a study on the side-channel secu- rity of parallel implementations of lattice-based key encapsulation mech- anisms. Initially, we developed a power model to describe the power leakage during message encoding. Utilizing this power model, we pro- pose a multi-ciphertext message recovery attack, which can retrieve the required messages for a chosen ciphertext attack through a suitable mes- sage...

2024/008 (PDF) Last updated: 2024-02-01
SoK: Methods for Sampling Random Permutations in Post-Quantum Cryptography
Alessandro Budroni, Isaac A. Canales-Martínez, Lucas Pandolfo Perin
Implementation

In post-quantum cryptography, permutations are frequently employed to construct cryptographic primitives. Careful design and implementation of sampling random unbiased permutations is essential for efficiency and protection against side-channel attacks. Nevertheless, there is a lack of systematic research on this topic. Our work seeks to fill this gap by studying the most prominent permutation sampling algorithms and assessing their advantages and limitations. We combine theoretical and...

2023/1952 (PDF) Last updated: 2023-12-25
Overview and Discussion of Attacks on CRYSTALS-Kyber
Stone Li
Attacks and cryptanalysis

This paper reviews common attacks in classical cryptography and plausible attacks in the post-quantum era targeted at CRYSTALS-Kyber. Kyber is a recently standardized post-quantum cryptography scheme that relies on the hardness of lattice problems. Although it has undergone rigorous testing by the National Institute of Standards and Technology (NIST), there have recently been studies that have successfully executed attacks against Kyber while showing their applicability outside of controlled...

2023/1931 (PDF) Last updated: 2023-12-20
Single-Trace Side-Channel Attacks on CRYSTALS-Dilithium: Myth or Reality?
Ruize Wang, Kalle Ngo, Joel Gärtner, Elena Dubrova
Attacks and cryptanalysis

We present a side-channel attack on CRYSTALS-Dilithium, a post-quantum secure digital signature scheme, with two variants of post-processing. The side-channel attack exploits information leakage in the secret key unpacking procedure of the signing algorithm to recover the coefficients of the polynomials in the secret key vectors ${\bf s}_1$ and ${\bf s}_2$ by profiled deep learning-assisted power analysis. In the first variant, one half of the coefficients of ${\bf s}_1$ and ${\bf s}_2$ is...

2023/1923 (PDF) Last updated: 2023-12-17
Differential Fault Attack on Ascon Cipher
Amit Jana
Attacks and cryptanalysis

This work investigates the security of the Ascon authenticated encryption scheme in the context of fault attacks, with a specific focus on Differential Fault Analysis (DFA). Motivated by the growing significance of lightweight cryptographic solutions, particularly Ascon, we explore potential vulnerabilities in its design using DFA. By employing a novel approach that combines faulty forgery in the decryption query under two distinct fault models, leveraging bit-flip faults in the first phase...

2023/1922 (PDF) Last updated: 2023-12-16
One for All, All for Ascon: Ensemble-based Deep Learning Side-channel Analysis
Azade Rezaeezade, Abraham Basurto-Becerra, Léo Weissbart, Guilherme Perin
Attacks and cryptanalysis

In recent years, deep learning-based side-channel analysis (DLSCA) has become an active research topic within the side-channel analysis community. The well-known challenge of hyperparameter tuning in DLSCA encouraged the community to use methods that reduce the effort required to identify an optimal model. One of the successful methods is ensemble learning. While ensemble methods have demonstrated their effectiveness in DLSCA, particularly with AES-based datasets, their efficacy in analyzing...

2023/1891 (PDF) Last updated: 2023-12-08
In-depth Correlation Power Analysis Attacks on a Hardware Implementation of CRYSTALS-Dilithium
Huaxin Wang, Yiwen Gao, Yuejun Liu, Qian Zhang, Yongbin Zhou
Attacks and cryptanalysis

During the standardisation process of post-quantum cryptography, NIST encourages research on side-channel analysis for candidate schemes. As the recommended lattice signature scheme, CRYSTALS-Dilithium, when implemented on hardware, has only been subjected to the side-channel attack presented by Steffen et al. in IACR ePrint 2022. This attack is not complete and requires excessive traces. Therefore, we investigate the leakage of an FPGA (Kintex7) implementation of CRYSTALS-Dilithium using...

2023/1889 (PDF) Last updated: 2023-12-21
Fully Parallel, One-Cycle Random Shuffling for Efficient Countermeasure in Post-Quantum Cryptography
Jong-Yeon Park, Dongsoo Lee, Seonggyeom Kim, Wonil lee, Bo Gyeong Kang, Kouichi Sakurai
Foundations

Hiding countermeasures are the most widely utilized techniques for thwarting side-channel attacks, and their significance has been further emphasized with the advent of Post Quantum Cryptography (PQC) algorithms, owing to the extensive use of vector operations. Commonly, the Fisher-Yates algorithm is adopted in hiding countermeasures with permuted operation for its security and efficiency in implementation, yet the inherently sequential nature of the algorithm imposes limitations on hardware...

2023/1866 (PDF) Last updated: 2024-07-01
When NTT Meets SIS: Efficient Side-channel Attacks on Dilithium and Kyber
Zehua Qiao, Yuejun Liu, Yongbin Zhou, Mingyao Shao, Shuo Sun
Attacks and cryptanalysis

In 2022, NIST selected Kyber and Dilithium as post-quantum cryptographic standard algorithms. The Number Theoretic Transformation (NTT) algorithm, which facilitates polynomial multiplication, has become a primary target for side-channel attacks. In this work, we embed the NTT transformation matrix in Dilithium and Kyber into the SIS search problem, and further, we propose a divide and conquer strategy for dimensionality reduction of the SIS problem by utilizing the properties of NTT, and...

2023/1864 (PDF) Last updated: 2024-01-16
Cache Side-Channel Attacks Through Electromagnetic Emanations of DRAM Accesses
Julien Maillard, Thomas Hiscock, Maxime Lecomte, Christophe Clavier
Attacks and cryptanalysis

Remote side-channel attacks on processors exploit hardware and micro-architectural effects observable from software measurements. So far, the analysis of micro-architectural leakages over physical side-channels (power consumption, electromagnetic field) received little treatment. In this paper, we argue that those attacks are a serious threat, especially against systems such as smartphones and Internet-of-Things (IoT) devices which are physically exposed to the end-user. Namely, we show that...

2023/1860 (PDF) Last updated: 2023-12-04
EstraNet: An Efficient Shift-Invariant Transformer Network for Side-Channel Analysis
Suvadeep Hajra, Siddhartha Chowdhury, Debdeep Mukhopadhyay
Attacks and cryptanalysis

Deep Learning (DL) based Side-Channel Analysis (SCA) has been extremely popular recently. DL-based SCA can easily break implementations protected by masking countermeasures. DL-based SCA has also been highly successful against implementations protected by various trace desynchronization-based countermeasures like random delay, clock jitter, and shuffling. Over the years, many DL models have been explored to perform SCA. Recently, Transformer Network (TN) based model has also been introduced...

2023/1856 (PDF) Last updated: 2023-12-03
Optimizing AES Threshold Implementation under the Glitch-Extended Probing Model
Fu Yao, Hua Chen, Yongzhuang Wei, Enes Pasalic, Feng Zhou, Limin Fan
Implementation

Threshold Implementation (TI) is a well-known Boolean masking technique that provides provable security against side-channel attacks. In the presence of glitches, the probing model was replaced by the so-called glitch-extended probing model which specifies a broader security framework. In CHES 2021, Shahmirzadi et al. introduced a general search method for finding first-order 2-share TI schemes without fresh randomness (under the presence of glitches) for a given encryption algorithm....

2023/1796 (PDF) Last updated: 2023-11-21
Fault Attacks Sensitivity of Public Parameters in the Dilithium Verification
Andersson Calle Viera, Alexandre Berzati, Karine Heydemann
Attacks and cryptanalysis

This paper presents a comprehensive analysis of the verification algorithm of the CRYSTALS-Dilithium, focusing on a C reference implementation. Limited research has been conducted on its susceptibility to fault attacks, despite its critical role in ensuring the scheme’s security. To fill this gap, we investigate three distinct fault models - randomizing faults, zeroizing faults, and skipping faults - to identify vulnerabilities within the verification process. Based on our analysis, we...

2023/1781 (PDF) Last updated: 2023-11-25
A Lattice Attack on CRYSTALS-Kyber with Correlation Power Analysis
Yen-Ting Kuo, Atsushi Takayasu
Attacks and cryptanalysis

CRYSTALS-Kyber is a key-encapsulation mechanism, whose security is based on the hardness of solving the learning-with-errors (LWE) problem over module lattices. As in its specification, Kyber prescribes the usage of the Number Theoretic Transform (NTT) for efficient polynomial multiplication. Side-channel assisted attacks against Post-Quantum Cryptography (PQC) algorithms like Kyber remain a concern in the ongoing standardization process of quantum-computer-resistant cryptosystems. Among the...

2023/1750 (PDF) Last updated: 2023-11-13
A Statistical Verification Method of Random Permutations for Hiding Countermeasure Against Side-Channel Attacks
Jong-Yeon Park, Jang-Won Ju, Wonil Lee, Bo-Gyeong Kang, Yasuyuki Kachi, Kouichi Sakurai
Foundations

As NIST is putting the final touches on the standardization of PQC (Post Quantum Cryptography) public key algorithms, it is a racing certainty that peskier cryptographic attacks undeterred by those new PQC algorithms will surface. Such a trend in turn will prompt more follow-up studies of attacks and countermeasures. As things stand, from the attackers’ perspective, one viable form of attack that can be implemented thereupon is the so-called “side-channel attack”. Two best-known...

2023/1746 (PDF) Last updated: 2023-11-11
A masking method based on orthonormal spaces, protecting several bytes against both SCA and FIA with a reduced cost
Claude Carlet, Abderrahman Daif, Sylvain Guilley, Cédric Tavernier
Cryptographic protocols

In the attacker models of Side-Channel Attacks (SCA) and Fault Injection Attacks (FIA), the opponent has access to a noisy version of the internal behavior of the hardware. Since the end of the nineties, many works have shown that this type of attacks constitutes a serious threat to cryptosystems implemented in embedded devices. In the state-of-the-art, there exist several countermeasures to protect symmetric encryption (especially AES-128). Most of them protect only against one of these two...

2023/1732 (PDF) Last updated: 2023-11-08
On the Masking-Friendly Designs for Post-Quantum Cryptography
Suparna Kundu, Angshuman Karmakar, Ingrid Verbauwhede
Implementation

Masking is a well-known and provably secure countermeasure against side-channel attacks. However, due to additional redundant computations, integrating masking schemes is expensive in terms of performance. The performance overhead of integrating masking countermeasures is heavily influenced by the design choices of a cryptographic algorithm and is often not considered during the design phase. In this work, we deliberate on the effect of design choices on integrating masking techniques into...

2023/1698 (PDF) Last updated: 2023-11-02
Another Look at Side-Channel Resistant Encoding Schemes
Xiaolu Hou, Jakub Breier, Mladen Kovačević
Attacks and cryptanalysis

The idea of balancing the side-channel leakage in software was proposed more than a decade ago. Just like with other hiding-based countermeasures, the goal is not to hide the leakage completely but to significantly increase the effort required for the attack. Previous approaches focused on two directions: either balancing the Hamming weight of the processed data or deriving the code by using stochastic leakage profiling. In this brief, we build upon these results by proposing a novel...

2023/1681 (PDF) Last updated: 2023-10-30
The Need for MORE: Unsupervised Side-channel Analysis with Single Network Training and Multi-output Regression
Ioana Savu, Marina Krček, Guilherme Perin, Lichao Wu, Stjepan Picek
Attacks and cryptanalysis

Deep learning-based profiling side-channel analysis has gained widespread adoption in academia and industry due to its ability to uncover secrets protected by countermeasures. However, to exploit this capability, an adversary must have access to a clone of the targeted device to obtain profiling measurements and know secret information to label these measurements. Non-profiling attacks avoid these constraints by not relying on secret information for labeled data. Instead, they attempt all...

2023/1674 (PDF) Last updated: 2023-10-29
Carry Your Fault: A Fault Propagation Attack on Side-Channel Protected LWE-based KEM
Suparna Kundu, Siddhartha Chowdhury, Sayandeep Saha, Angshuman Karmakar, Debdeep Mukhopadhyay, Ingrid Verbauwhede
Attacks and cryptanalysis

Post-quantum cryptographic (PQC) algorithms, especially those based on the learning with errors (LWE) problem, have been subjected to several physical attacks in the recent past. Although the attacks broadly belong to two classes -- passive side-channel attacks and active fault attacks, the attack strategies vary significantly due to the inherent complexities of such algorithms. Exploring further attack surfaces is, therefore, an important step for eventually securing the deployment of these...

2023/1627 (PDF) Last updated: 2023-10-19
Defeating Low-Cost Countermeasures against Side-Channel Attacks in Lattice-based Encryption - A Case Study on Crystals-Kyber
Prasanna Ravi, Thales Paiva, Dirmanto Jap, Jan-Pieter D'Anvers, Shivam Bhasin
Attacks and cryptanalysis

In an effort to circumvent the high cost of standard countermeasures against side-channel attacks in post-quantum cryptography, some works have developed low-cost detection-based countermeasures. These countermeasures try to detect maliciously generated input ciphertexts and react to them by discarding the ciphertext or secret key. In this work, we take a look at two previously proposed low-cost countermeasures: the ciphertext sanity check and the decapsulation failure check, and demonstrate...

2023/1626 (PDF) Last updated: 2024-04-18
Et tu, Brute? SCA Assisted CCA using Valid Ciphertexts - A Case Study on HQC KEM
Thales Paiva, Prasanna Ravi, Dirmanto Jap, Shivam Bhasin
Attacks and cryptanalysis

HQC is a code-based key encapsulation mechanism (KEM) that was selected to move to the fourth round of the NIST post-quantum standardization process. While this scheme was previously targeted by side-channel assisted chosen-ciphertext attacks for key recovery, all these attacks have relied on malformed ciphertexts for key recovery. Thus, all these attacks can be easily prevented by deploying a detection based countermeasures for invalid ciphertexts, and refreshing the secret key upon...

2023/1615 (PDF) Last updated: 2024-01-16
Order vs. Chaos: A Language Model Approach for Side-channel Attacks
Praveen Kulkarni, Vincent Verneuil, Stjepan Picek, Lejla Batina
Attacks and cryptanalysis

We introduce the Order vs. Chaos (OvC) classifier, a novel language-model approach for side-channel attacks combining the strengths of multitask learning (via the use of a language model), multimodal learning, and deep metric learning. Our methodology offers a viable substitute for the multitask classifiers used for learning multiple targets, as put forward by Masure et al. We highlight some well-known issues with multitask classifiers, like scalability, balancing multiple tasks, slow...

2023/1604 (PDF) Last updated: 2023-10-17
Manifold Learning Side-Channel Attacks against Masked Cryptographic Implementations
Jianye Gao, Xinyao Li, Changhai Ou, Zhu Wang, Fei Yan
Attacks and cryptanalysis

Masking, as a common countermeasure, has been widely utilized to protect cryptographic implementations against power side-channel attacks. It significantly enhances the difficulty of attacks, as the sensitive intermediate values are randomly partitioned into multiple parts and executed on different times. The adversary must amalgamate information across diverse time samples before launching an attack, which is generally accomplished by feature extraction (e.g., Points-Of-Interest (POIs)...

2023/1600 (PDF) Last updated: 2024-01-19
Compress: Generate Small and Fast Masked Pipelined Circuits
Gaëtan Cassiers, Barbara Gigerl, Stefan Mangard, Charles Momin, Rishub Nagpal
Implementation

Masking is an effective countermeasure against side-channel attacks. It replaces every logic gate in a computation by a gadget that performs the operation over secret sharings of the circuit's variables. When masking is implemented in hardware, care should be taken to protect against leakage from glitches, which could otherwise undermine the security of masking. This is generally done by adding registers, which stop the propagation of glitches, but introduce additional latency and area cost....

2023/1598 (PDF) Last updated: 2023-10-16
Lightweight but Not Easy: Side-channel Analysis of the Ascon Authenticated Cipher on a 32-bit Microcontroller
Léo Weissbart, Stjepan Picek
Attacks and cryptanalysis

Ascon is a recently standardized suite of symmetric cryptography for authenticated encryption and hashing algorithms designed to be lightweight. The Ascon scheme has been studied since it was introduced in 2015 for the CAESAR competition, and many efforts have been made to transform this hardware-oriented scheme to work with any embedded device architecture. Ascon is designed with side-channel resistance in mind and can also be protected with countermeasures against side-channel...

2023/1596 (PDF) Last updated: 2023-10-16
A Black Box Attack Using Side Channel Analysis and Hardware Trojans
Raja Adhithan Radhakrishnan
Attacks and cryptanalysis

The emergence of hardware trojans as significant threats in various aspects of hardware design, including Firmware, open-source IP, and PCB design, has raised serious concerns. Simultaneously, AI technologies have been employed to simplify the complexity of Side Channel Analysis (SCA) attacks. Due to the increasing risk posed by these threats, it becomes essential to test hardware by considering all possible attack vectors. This paper aims to propose a black box attack using...

2023/1590 (PDF) Last updated: 2024-03-18
Single trace HQC shared key recovery with SASCA
Guillaume Goy, Julien Maillard, Philippe Gaborit, Antoine Loiseau
Attacks and cryptanalysis

This paper presents practicable single trace attacks against the Hamming Quasi-Cyclic (HQC) Key Encapsulation Mechanism. These attacks are the first Soft Analytical Side-Channel Attacks (SASCA) against code-based cryptography. We mount SASCA based on Belief Propagation (BP) on several steps of HQC's decapsulation process. Firstly, we target the Reed-Solomon (RS) decoder involved in the HQC publicly known code. We perform simulated attacks under Hamming weight leakage model, and reach...

2023/1587 (PDF) Last updated: 2023-10-13
A Single-Trace Message Recovery Attack on a Masked and Shuffled Implementation of CRYSTALS-Kyber
Sönke Jendral, Kalle Ngo, Ruize Wang, Elena Dubrova
Attacks and cryptanalysis

Last year CRYSTALS-Kyber was chosen by NIST as a new, post-quantum secure key encapsulation mechanism to be standardized. This makes it important to assess the resistance of CRYSTALS-Kyber implementations to physical attacks. Pure side-channel attacks on post-quantum cryptographic algorithms have already been well-explored. In this paper, we present an attack on a masked and shuffled software implementation of CRYSTALS-Kyber that combines fault injection with side-channel analysis. First, a...

2023/1563 (PDF) Last updated: 2023-10-17
Formal Analysis of Non-profiled Deep-learning Based Side-channel Attacks
Akira Ito, Rei Ueno, Rikuma Tanaka, Naofumi Homma
Attacks and cryptanalysis

This paper formally analyzes two major non-profiled deep-learning-based side-channel attacks (DL-SCAs): differential deep-learning analysis (DDLA) by Timon and collision DL-SCA by Staib and Moradi. These DL-SCAs leverage supervised learning in non-profiled scenarios. Although some intuitive descriptions of these DL-SCAs exist, their formal analyses have been rarely conducted yet, which makes it unclear why and when the attacks succeed and how the attack can be improved. In this paper, we...

Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.