This site uses cookies, tags, and tracking settings to store information to help give you the very best browsing experience. Dismiss this warning

Individual Variability Is More Important Than Analytical Methods When Calculating Relative Speed of Beverage Bioavailability

Click name to view affiliation

Edward M. Balog School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA

Search for other papers by Edward M. Balog in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2127-9659
,
Mateo Golloshi School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA

Search for other papers by Mateo Golloshi in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5192-8402
,
HyunGyu Suh School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA

Search for other papers by HyunGyu Suh in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4549-5196
, and
Melinda Millard-Stafford School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA

Search for other papers by Melinda Millard-Stafford in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2944-1494 *
Restricted access

Deuterium oxide (D2O) appearance in blood is a marker of fluid bioavailability. However, whether biomarker robustness (e.g., relative fluid delivery speed) is consistent across analytical methods (e.g., cavity ring-down spectroscopy) remains unclear. Fourteen men ingested fluid (6 ml/kg body mass) containing 0.15 g/kg D2O followed by 45 min blood sampling. Plasma (D2O) was detected (n = 8) by the following: isotope-ratio mass spectrometry after vapor equilibration (IRMS-equilibrated water) or distillation (IRMS-plasma) and cavity ring-down spectroscopy. Two models calculated D2O halftime to peak (t1/2max): sigmoid curve fit versus asymmetric triangle (TRI). Background (D2O) differed (p < .001, η2 = .98) among IRMS-equilibrated water, IRMS-plasma, and cavity ring-down spectroscopy (152.2 ± 0.8, 147.2 ± 1.5, and 137.7 ± 2.2 ppm), but did not influence (p > .05) D2O appearance (Δppm), time to peak, or t1/2max. Stratifying participants based on mean t1/2max (12 min) into “slow” versus “fast” subgroups resulted in a 5.8 min difference (p < .001, η2 = .73). Significant t1/2max model (p = .01, η2 = .44) and Model × Speed Subgroup interaction (p = .005, η2 = .50) effects were observed. Bias between TRI and sigmoid curve fit increased with t1/2max speed: no difference (p = .75) for fast (9.0 min vs. 9.2 min, respectively) but greater t1/2max (p = .001) with TRI for the slow subgroup (16.1 min vs. 13.7 min). Fluid bioavailability markers are less influenced by which laboratory method is used to measure D2O as compared with the individual variability effects that influence models for calculating t1/2max. Thus, TRI model may not be appropriate for individuals with slow fluid delivery speeds.

  • Collapse
  • Expand
  • Armstrong, L.E., Klau, J.F., Ganio, M.S., McDermott, B.P., Yeargin, S.W., Lee, E.C., & Maresh, C.M. (2010). Accumulation of 2H2O in plasma and eccrine sweat during exercise-heat stress. European Journal of Applied Physiology, 108(3), 477482. https://doi.org/10.1007/s00421-009-1223-2

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Armstrong, L.E., Pumerantz, A.C., Fiala, K.A., Roti, M.W., Kavouras, S.A., Casa, D.J., & Maresh, C.M. (2010). Human hydration indices: Acute and longitudinal reference values. International Journal of Sport Nutrition and Exercise Metabolism, 20(2), 145153. https://doi.org/10.1123/ijsnem.20.2.145

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Berman, E.S., Fortson, S.L., Snaith, S.P., Gupta, M., Baer, D.S., Chery, I., Blanc, S., Melanson, E.L., Thomson, P.J., & Speakman, J.R. (2012). Direct analysis of δ2H and δ18O in natural and enriched human urine using laser-based, off-axis integrated cavity output spectroscopy. Analytical Chemistry, 84(22), 97689773. https://doi.org/10.1021/ac3016642

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Berman, E.S., Melanson, E.L., Swibas, T., Snaith, S.P., & Speakman, J.R. (2015). Inter- and intraindividual correlations of background abundances of 2H, 18O and 17O in human urine and implications for DLW measurements. European Journal of Clinical Nutrition, 69(10), 10911098. https://doi.org/10.1038/ejcn.2015.10

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bland, J.M., & Altman, D.G. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. Lancet, 1(8476), 307310.

  • Bluck, L.J., Harding, M., French, S., Wright, A., Halliday, D., & Coward, W.A. (2002). Measurement of gastric emptying in man using deuterated octanoic acid. Rapid Communications in Mass Spectrometry, 16(2), 127133. https://doi.org/10.1002/rcm.541

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Church, A., Lee, F., & Buono, M.J. (2017). Transition duration of ingested deuterium oxide to eccrine sweat during exercise in the heat. Journal of Thermal Biology, 63, 8891. https://doi.org/10.1016/j.jtherbio.2016.11.018

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Currell, K., Urch, J., Cerri, E., Jentjens, R.L., Blannin, A.K., & Jeukendrup, A.E. (2008). Plasma deuterium oxide accumulation following ingestion of different carbohydrate beverages. Applied Physiology, Nutrition, and Metabolism, 33(6), 10671072. https://doi.org/10.1139/H08-084

    • Search Google Scholar
    • Export Citation
  • Damas, F., Phillips, S.M., Libardi, C.A., Vechin, F.C., Lixandrão, M.E., Jannig, P.R., Costa, L.A., Bacurau, A.V., Snijders, T., Parise, G., Tricoli, V., Roschel, H., & Ugrinowitsch, C. (2016). Resistance training-induced changes in integrated myofibrillar protein synthesis are related to hypertrophy only after attenuation of muscle damage. Journal of Physiology, 594(18), 52095222. https://doi.org/10.1113/jp272472

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Davis, J.M., Burgess, W.A., Slentz, C.A., & Bartoli, W.P. (1990). Fluid availability of sports drinks differing in carbohydrate type and concentration. American Journal of Clinical Nutrition, 51(6), 10541057. https://doi.org/10.1093/ajcn/51.6.1054

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Davis, J.M., Lamb, D.R., Burgess, W.A., & Bartoli, W.P. (1987). Accumulation of deuterium oxide in body fluids after ingestion of D2O-labeled beverages. Journal of Applied Physiology, 63(5), 20602066. https://doi.org/10.1152/jappl.1987.63.5.2060

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Davis, J.M., Lamb, D.R., Pate, R.R., Slentz, C.A., Burgess, W.A., & Bartoli, W.P. (1988). Carbohydrate-electrolyte drinks: Effects on endurance cycling in the heat. American Journal of Clinical Nutrition, 48(4), 10231030. https://doi.org/10.1093/ajcn/48.4.1023

    • PubMed
    • Search Google Scholar
    • Export Citation
  • dos Santos, T.H.R., do Rosário Zucchi, M., Lemaire, T.J., de Azevedo, A.E.G., & Viola, D.N. (2019). A statistical analysis of IRMS and CRDS methods in isotopic ratios of 2H/1H and 18O/16O in water. SN Applied Sciences, 1(7), Article 664. https://doi.org/10.1007/s42452-019-0635-9

    • Search Google Scholar
    • Export Citation
  • Giavarina, D. (2015). Understanding Bland Altman analysis. Biochemia Medica, 25(2), 141151. https://doi.org/10.11613/bm.2015.015

  • Gisolfi, C.V., Summers, R.W., Schedl, H.P., Bleiler, T.L., & Oppliger, R.A. (1990). Human intestinal water absorption: Direct vs. indirect measurements. American Journal of Physiology, 258(2, Pt. 1), G216G222. https://doi.org/10.1152/ajpgi.1990.258.2.G216

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Harbison, J.E., Dugas, L.R., Brieger, W., Tayo, B.O., Alabi, T., Schoeller, D.A., & Luke, A. (2015). Seasonal variation in natural abundance of 2H and 18O in urine samples from rural Nigeria. Journal of Applied Physiology, 119(1), 5560. https://doi.org/10.1152/japplphysiol.00894.2014

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hill, R.J., Bluck, L.J., & Davies, P.S. (2004). Using a non-invasive stable isotope tracer to measure the absorption of water in humans. Rapid Communications in Mass Spectrometry, 18(6), 701706. https://doi.org/10.1002/rcm.1391

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hill, R.J., Bluck, L.J., & Davies, P.S. (2008). The hydration ability of three commercially available sports drinks and water. Journal of Science and Medicine in Sport, 11(2), 116123. https://doi.org/10.1016/j.jsams.2006.12.117

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Horvitz, M.A., & Schoeller, D.A. (2001). Natural abundance deuterium and 18-oxygen effects on the precision of the doubly labeled water method. American Journal of Physiology: Endocrinology and Metabolism, 280(6), E965E972. https://doi.org/10.1152/ajpendo.2001.280.6.E965

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jackson, A.S., & Pollock, M.L. (1978). Generalized equations for predicting body density of men. British Journal of Nutrition, 40(3), 497504. https://doi.org/10.1079/bjn19780152

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jeukendrup, A.E., Currell, K., Clarke, J., Cole, J., & Blannin, A.K. (2009). Effect of beverage glucose and sodium content on fluid delivery. Nutrition and Metabolism, 6, Article 9. https://doi.org/10.1186/1743-7075-6-9

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jeukendrup, A.E., & Moseley, L. (2010). Multiple transportable carbohydrates enhance gastric emptying and fluid delivery. Scandanavian Journal of Medicine and Science in Sports, 20(1), 112121. https://doi.org/10.1111/j.1600-0838.2008.00862.x

    • Search Google Scholar
    • Export Citation
  • Johannsen, D.L., Knuth, N.D., Huizenga, R., Rood, J.C., Ravussin, E., & Hall, K.D. (2012). Metabolic slowing with massive weight loss despite preservation of fat-free mass. Journal of Clinical Endocrinology and Metabolism, 97(7), 24892496. https://doi.org/10.1210/jc.2012-1444

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Koulmann, N., Melin, B., Jimenez, C., Charpenet, A., Savourey, G., & Bittel, J. (1997). Effects of different carbohydrate-electrolyte beverages on the appearance of ingested deuterium in body fluids during moderate exercise by humans in the heat. European Journal of Applied Physiology and Occupation Physiology, 75(6), 525531. https://doi.org/10.1007/s004210050199

    • Search Google Scholar
    • Export Citation
  • Lambert, C.P., Ball, D., Leiper, J.B., & Maughan, R.J. (1999). The use of a deuterium tracer technique to follow the fate of fluids ingested by human subjects: Effects of drink volume and tracer concentration and content. Experimental Physiology, 84(2), 391399.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Leiper, J.B. (2015). Fate of ingested fluids: Factors affecting gastric emptying and intestinal absorption of beverages in humans. Nutrition Reviews, 73, 5772. https://doi.org/10.1093/nutrit/nuv032

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Leiper, J.B., Brouns, F., Maughan, R.J. (1992). Absorption of water and solute from sucrose electrolyte solutions containing calcium and magnesium. Proceedings of the Nutrition Society, 51, Article 142.

    • Search Google Scholar
    • Export Citation
  • Lenhard, W., & Lenhard, A. (2016). Computation of effect sizes. Psychometrica. https://www.psychometrica.de/effect_size.html

  • Lukaski, H.C., & Johnson, P.E. (1985). A simple, inexpensive method of determining total body water using a tracer dose of D2O and infrared absorption of biological fluids. American Journal of Clinical Nutrition, 41(2), 363370. https://doi.org/10.1093/ajcn/41.2.363

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Maughan, R.J, & Leiper, J.B. (1996). Methods for the assessment of gastric emptying in humans: An overview. Diabetic Medicine, 13(Suppl. 9), S6S10.

  • Maughan, R.J., Leiper, J.B., & McGaw, B.A. (1990). Effects of exercise intensity on absorption of ingested fluids in man. Experimental Physiology, 75(3), 419421. https://doi.org/10.1113/expphysiol.1990.sp003419

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Maughan, R.J., Leiper, J.B., & Vist, G.E. (2004). Gastric emptying and fluid availability after ingestion of glucose and soy protein hydrolysate solutions in man. Experimental Physiology, 89(1), 101108. https://doi.org/10.1113/expphysiol.2003.002655

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McKinney C., McCrea J., Epstein S., Allen, H.A., & Urey, H.C. (1950). Improvements in mass spectrometers for the measurement of small differences in isotope abundance ratios. The Review of Scientific Instruments, 21(8), 724730. https://doi.org/10.1063/1.1745698

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Millard-Stafford, M.L., Cureton, K.J., Wingo, J.E., Trilk, J., Warren, G.L., & Buyckx, M. (2007). Hydration during exercise in warm, humid conditions: Effect of a caffeinated sports drink. International Journal of Sport Nutrition and Exercise Metabolism, 17(2), 163177. https://doi.org/10.1123/ijsnem.17.2.163

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nordøy, E.S., Lager, A.R., & Schots, P.C. (2017). Seasonal changes in background levels of deuterium and oxygen-18 prove water drinking by harp seals, which affects the use of the doubly labelled water method. The Journal of Experimental Biology, 220(Pt. 23), 44504455. https://doi.org/10.1242/jeb.161943

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Penna, D., Stenni, B., Šanda, M., Wrede, S., Bogaard, T.A., Michelini, M., … Wassenaar, L.I. (2012). Technical note: Evaluation of between-sample memory effects in the analysis of δ2H and δ18O of water samples measured by laser spectroscopes. Hydrology Earth Systems Science, 16(10), 39253933. https://doi.org/10.5194/hess-16-3925-2012

    • Search Google Scholar
    • Export Citation
  • Péronnet, F., Mignault, D., du Souich, P., Vergne, S., Le Bellego, L., Jimenez, L., & Rabasa-Lhoret, R. (2012). Pharmacokinetic analysis of absorption, distribution and disappearance of ingested water labeled with D2O in humans. European Journal of Applied Physiology, 112(6), 22132222. https://doi.org/10.1007/s00421-011-2194-7

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rehrer, N.J., Wagenmakers, A.J., Beckers, E.J., Halliday, D., Leiper, J.B., Brouns, F., Maughan, R.J., Westerterp, K., & Saris, W.H. (1992). Gastric emptying, absorption, and carbohydrate oxidation during prolonged exercise. Journal of Applied Physiology, 72(2), 468475. https://doi.org/10.1152/jappl.1992.72.2.468

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rowlands, D.S., Bonetti, D.L., & Hopkins, W.G. (2011). Unilateral fluid absorption and effects on peak power after ingestion of commercially available hypotonic, isotonic, and hypertonic sports drinks. International Journal of Sport Nutrition and Exercise Metabolism, 21(6), 480491. https://doi.org/10.1123/ijsnem.21.6.480

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sagayama, H., Racine, N.M., Shriver, T.C., & Schoeller, D.A. (2021). Comparison of isotope ratio mass spectrometry and cavity ring-down spectroscopy procedures and precision of the doubly labeled water method in different physiological specimens. Rapid Communications in Mass Spectrometry, 35(21), Article 9188. https://doi.org/10.1002/rcm.9188

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Thorsen, T., Shriver, T., Racine, N., Richman, B.A., & Schoeller, D.A. (2011). Doubly labeled water analysis using cavity ring-down spectroscopy. Rapid Communications in Mass Spectrometry, 25(1), 38. https://doi.org/10.1002/rcm.4795

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1861 558 37
Full Text Views 189 121 2
PDF Downloads 113 17 3