Periodicity pitch is the most salient and important of all pitch percepts. Psychoacoustical models of this percept have long postulated the existence of internalized harmonic templates against which incoming resolved spectra can be compared, and pitch determined according to the best matching templates [J. Goldstein, J. Acoust. Soc. Am. 54, 1496–1516 (1973)]. However, it has been a mystery where and how such harmonic templates can come about. We present here a biologically plausible model for how such templates can form in the early stages of the auditory system. The model demonstrates that any broadband stimulus, including noise and random click trains, suffices for generating the templates, and that there is no need for any delay lines, oscillators, or other neural temporal structures. The model consists of two key stages: cochlear filtering followed by coincidence detection. The cochlear stage provides responses analogous to those recorded in the auditory nerve and cochlear nucleus. Specifically, it performs moderately sharp frequency analysis via a filterbank with tonotopically ordered center frequencies (CFs); the rectified and phase-locked filter responses are further enhanced temporally to resemble the synchronized responses of cells in the cochlear nucleus. The second stage is a matrix of coincidence detectors that compute the average pairwise instantaneous correlation (or product) between responses from all CFs across the channels. Model simulations show that for any broadband stimulus, a degree of high coincidence occurs among cochlear channels that are spaced precisely at harmonic intervals. Accumulating coincidences over time results in the formation of harmonic templates for all fundamental frequencies in the phase-locking frequency range. The model accounts for the critical role played by three subtle but important factors in cochlear function: the nonlinear transformations following the filtering stage, the rapid phase shifts of the traveling wave near its resonance, and the spectral resolution of the cochlear filters. Finally, we discuss the physiological correlates and location of such a process and its resulting templates.

1.
Bilsen
,
F.
(
1977
). “
Pitch of noise signals: Evidence for a central spectrum
,”
J. Acoust. Soc. Am.
61
,
150
161
.
2.
Cariani
,
P.
, and
Delgutte
,
B.
(
1996a
). “
Neural correlates of the pitch of complex tones. i: Pitch and pitch salience
,”
J. Neurophysiol.
76
,
1698
1716
.
3.
Cariani
,
P.
, and
Delgutte
,
B.
(
1996b
). “
Neural correlates of the pitch of complex tones. ii: Pitch shift, pitch ambiguity, phase invariance, pitch circularity, rate pitch, and the dominance region for pitch
,”
J. Neurophysiol.
76
,
1717
1734
.
4.
Carlyon
,
R.
(
1998a
). “
Comments on a unitary model of pitch perception
,”
J. Acoust. Soc. Am.
104
,
1118
1121
.
5.
Carlyon, R. (1998b). “The effects of resolvability on the encoding of fundamental frequency by the auditory system,” in Psychophysical and Physiological Advances in Hearing, edited by A. R. Palmer, A. Rees, A. Q. Summerfield, and R. Meddis (Whurr, London).
6.
Clarkson
,
M.
, and
Rogers
,
E.
(
1995
). “
Infants require low-frequency energy to hear the pitch of the missing fundamental
,”
J. Acoust. Soc. Am.
98
,
148
154
.
7.
Cohen
,
M.
,
Grossberg
,
S.
, and
Wyse
,
L.
(
1995
). “
A spectral network model of pitch perception
,”
J. Acoust. Soc. Am.
98
,
862
879
.
8.
Colburn, S., and Durlach, N. (1978). “Models of binaural interactions,” in Handbook of Perception, edited by E. Carterette and M. Friedman (Academic, New York), Vol. IV.
9.
Cramer
,
E.
, and
Huggins
,
W.
(
1958
). “
Reaction of pitch through binaural interactions
,”
J. Acoust. Soc. Am.
30
,
413
417
.
10.
de Boer, E. (1976). “On the residue in hearing and auditory pitch perception,” in Handbook of Sensory Physiology, edited by W. Keidel and D. Neff (Springer-Verlag, Berlin), Vol. III, pp. 479–583.
11.
de Cheveigne
,
A.
(
1998
). “
Cancellation model of pitch perception
,”
J. Acoust. Soc. Am.
103
,
1261
1271
.
12.
de Cheveigne
,
A.
,
McAdams
,
S.
, and
Marin
,
C.
(
1995
). “
Concurrent vowel identification. ii: Effect of phase, harmonicity, and task
,”
J. Acoust. Soc. Am.
101
,
2848
2856
.
13.
Duifhuis
,
H.
,
Willems
,
L.
, and
Sluyter
,
R.
(
1982
). “
Measurement of pitch in speech: An implementation of Goldstein’s theory of pitch perception
,”
J. Acoust. Soc. Am.
71
,
1568
1580
.
14.
Evans
,
E.
(
1978
). “
Place and time coding in the peripheral auditory system: Some physiological pros and cons
,”
Audiology
17
,
369
420
.
15.
Evans, E., and Zhao, W. (1998). “Periodicity coding of the fundamental frequency of harmonic complexes. Physiological and pharmalogical study of onset units in the ventral cochlear nucleus,” in Psychophysical and Physiological Advances in Hearing. Proceedings of the 11th International Symposium on Hearing, edited by A. R. Palmer, A. Ress, A. Q. Summerfield, and R. Meddis (Whurr Publishers, London), pp. 186–194.
16.
Ghitza
,
O.
(
1988
). “
Temporal non-place information in the auditory-nerve firing patterns as a front-end for speech recognition in a noisy environment
,”
J. Phonetics
16
,
109
204
.
17.
Goldstein
,
J.
(
1973a
). “
An optimum processor theory for the central formation of pitch of complex tones
,”
J. Acoust. Soc. Am.
54
,
1496
1516
.
18.
Goldstein
,
J.
(
1973b
). “
An optimum processor theory for the central formation of the pitch of complex tones
,”
J. Acoust. Soc. Am.
54
,
1496
1516
.
19.
Greenberg
,
S.
,
Geisler
,
C.
, and
Deng
,
L.
(
1986
). “
Frequency selectivity of single cochlear nerve fibers based on the temporal response patterns of two-tone signals
,”
J. Acoust. Soc. Am.
79
,
1010
1019
.
20.
Greenberg, S., Poeppel, D., and Roberts, T. (1998). “A space-time theory of pitch and timbre based on cortical expansion of the cochlear travelling-wave delay,” in Psychophysical and Physiological Advances in Hearing. Proceedings of the 11th International Symposium on Hearing, edited by A. R. Palmer, A. Ress, A. Q. Summerfield, and R. Meddis (Whurr Publishers, London).
21.
Hattori
,
T.
, and
Suga
,
N.
(
1997
). “
The inferior colliculus of the mustached bat has the frequency-vs-latency coordinates
,”
J. Comp. Physiol. A
180
,
271
284
.
22.
Hewitt
,
J.
, and
Meddis
,
R.
(
1994
). “
A computer model of amplitude-modulation sensitivity of single units in the inferior colliculis
,”
J. Acoust. Soc. Am.
95
,
2145
2159
.
23.
Jeffress
,
A.
(
1948
). “
A place theory of sound localization
,”
J. Comp. Physiol. Psychol.
61
,
468
486
.
24.
Langner
,
G.
(
1992
). “
Periodicity coding in the auditory system
,”
Hear. Res.
6
,
115
142
.
25.
Langner
,
G.
, and
Schreiner
,
C.
(
1988
). “
Periodicity coding in the inferior colliculus of the cat
,”
J. Neurophysiol.
60
,
1805
1822
.
26.
Lickleider
,
J.
(
1951
). “
A duplex theory of pitch perception
,”
Experientia
7
,
128
133
.
27.
Lyon, R., and Shamma, S. (1996). “Auditory representation of timbre and pitch,” in Auditory Computations, edited by H. Hawkins, E. T. McMullen, A. Popper, and R. Fay (Springer-Verlag, Berlin), pp. 221–270.
28.
Meddis
,
R.
, and
Hewitt
,
J.
(
1991
). “
Virtual pitch and phase sensitivity of a computer model of the auditory periphery. i: Pitch identification
,”
J. Acoust. Soc. Am.
89
,
2866
2882
.
29.
Montgomery
,
C.
, and
Clarkson
,
M.
(
1997
). “
Infants’ pitch perception: Masking by low- and high-frequency noises
,”
J. Acoust. Soc. Am.
102
,
3665
3672
.
30.
Moore, B. (1989). An Introduction of the Psychology of Hearing, 3rd ed. (Academic, London).
31.
Moore, B. C. J. (1986). Frequency Selectivity in Hearing (Academic, London), Chap. 5.
32.
Oertel
,
D.
,
Wu
,
S.
, and
Dizack
,
C.
(
1990
). “
Morphology and physiology of cells in slice preparation of posterovental cochlear nucleus of mice
,”
J. Comp. Neurol.
295
,
136
154
.
33.
Oppenheim, A., and Schafer, R. (1976). Digital Signal Processing (Prentice-Hall, New Jersey).
34.
Palmer, A., Winter, I., Jiang, D., and James, N. (1995). “Across frequency integration by neurons in the ventral cochlear nucleus,” in Advances in Hearing Research, edited by J. Manley, G. Klump, C. Kopple, H. Fastl, and H. Oeckinghaus (World Scientific, Singapore).
35.
Patterson, R., and Holdsworth, J. (1991). “A functional model of neural activity patterns and auditory images,” in Advances in Speech, Hearing and Language Processing, edited by W. A. Ainsworth (JAI Press, London), Vol. 3.
36.
Plomp, R. (1976). Aspects of Tone Sensation (Academic, New York).
37.
Rhode
,
W.
(
1994
). “
Lateral suppression and inhibition in the cochlear nucleus of the cat
,”
J. Neurophysiol.
71
,
493
519
.
38.
Rhode
,
W.
(
1995
). “
Interspike intervals as a correlate of periodicity pitch in cat cochlear nucleus
,”
J. Acoust. Soc. Am.
97
,
2414
2429
.
39.
Ruggero
,
M.
(
1973
). “
Response to noise in auditory nerve fibers in squirrel monkey
,”
J. Neurophysiol.
36
,
569
587
.
40.
Sachs
,
M. B.
, and
Young
,
E. D.
(
1979
). “
Encoding of steady state vowels in the auditory-nerve: Representation in terms of discharge rate
,”
J. Acoust. Soc. Am.
66
,
470
479
.
41.
Schouten
,
J.
(
1940
). “
The residue and the mechanism of hearing
,”
Proc. K. Ned. Akad. Wet.
43
,
991
999
.
42.
Schreiner
,
C.
, and
Langner
,
G.
(
1988
). “
Periodicity coding in the inferior colliculus of the cat. ii. topographical organization
,”
J. Neurophysiol.
60
,
1823
1840
.
43.
Schreiner
,
C.
, and
Urbas
,
J.
(
1988
). “
Representation of amplitude modulation in the auditory cortex of the cat. i: The anterior field
,”
Hear. Res.
21
,
227
241
.
44.
Schwartz
,
D.
, and
Tomlinson
,
R.
(
1990
). “
Spectral response patterns of auditory cortex neurons to harmonic complex tones in alert monkey (macaca mulatta)
,”
J. Neurophysiol.
64
,
282
299
.
45.
Seneff
,
S.
(
1988
). “
A joint synchrony/mean-rate model of auditory processing
,”
J. Phonetics
85
,
55
76
.
46.
Shamma
,
S.
(
1985a
). “
Speech processing in the auditory system: I. representation of speech sounds in the responses of the auditory nerve
,”
J. Acoust. Soc. Am.
78
,
1612
1621
.
47.
Shamma
,
S.
(
1985b
). “
Speech processing in the auditory system: Ii. lateral inhibition and the central processing of speech evoked activity in the auditory nerve
,”
J. Acoust. Soc. Am.
78
,
1622
1632
.
48.
Shamma
,
S.
,
Chadwick
,
R.
,
Wilbur
,
J.
,
Morrish
,
K.
, and
Rinzel
,
J.
(
1986
). “
A biophysical model of cochlear processing: Intensity dependence of pure tone responses
,”
J. Acoust. Soc. Am.
80
,
133
145
.
49.
Shamma
,
S.
, and
Morrish
,
K.
(
1986
). “
Synchrony suppression in complex stimulus responses of a biophysical model of the cochlea
,”
J. Acoust. Soc. Am.
81
,
1486
1498
.
50.
Shamma
,
S.
,
Shen
,
N.
, and
Gopalaswamy
,
P.
(
1989
). “
Stereausis: Binaural processing without neural delays
,”
J. Acoust. Soc. Am.
86
,
989
1006
.
51.
Slaney, M., and Lyon, R. (1993). “On the importance of time—A temporal representation of sound,” in Visual Representations of Speech Signals, edited by M. Cooke, S. Beet, and M. Crawford (Wiley, New York).
52.
Smith
,
P.
, and
Rhode
,
W.
(
1989
). “
Structural and functional properties distinguish two types of multipolar cells in the cat ventral cochlear nucleus
,”
J. Acoust. Soc. Am.
282
,
595
616
.
53.
Summerfield
,
A.
, and
Assmann
,
P.
(
1990
). “
Modelling the perception of concurrent vowels: Vowels with different fundamental frequencies
,”
J. Acoust. Soc. Am.
88
,
680
697
.
54.
Terhardt
,
E.
(
1974
). “
Pitch consonance and harmony
,”
J. Acoust. Soc. Am.
55
,
1061
1069
.
55.
Wang
,
K.
, and
Shamma
,
S. A.
(
1994
). “
Self-normalization and noise-robustness in early auditory representations
,”
IEEE Trans. Speech Audio Process.
2
,
421
435
.
56.
Wightman
,
F.
(
1973
). “
A pattern transformation model of pitch
,”
J. Acoust. Soc. Am.
54
,
397
406
.
57.
Winter, I., Wiegrebe, L., and Patterson, R. (1999). “Encoding iterated ripple noise and harmonic complexes in the ventral cochlear nucleus,” in Abs. 552, Assn. Res. Otol. Annual Meeting.
58.
Yang
,
X.
,
Wang
,
K.
, and
Shamma
,
S. A.
(
1992
). “
Auditory representations of acoustic signals
,”
IEEE Trans. Inf. Theory
, Special Isssue on Wavelet Transforms and Multiresolution Signal Analysis
38
,
824
839
.
59.
Yost
,
W.
, and
Hill
,
R.
(
1979
). “
Model of the pitch and pitch strength of ripple-noise
,”
J. Acoust. Soc. Am.
66
,
400
410
.
60.
Young
,
E.
, and
Sachs
,
M.
(
1979
). “
Representation of steady-state vowels in the temporal aspects of the discharge patterns of populations of auditory-nerve fibers
,”
J. Acoust. Soc. Am.
66
,
1381
1403
.
This content is only available via PDF.
You do not currently have access to this content.