We introduce a Frobenius algebra-valued Kadomtsev-Petviashvili (KP) hierarchy and show the existence of Frobenius algebra-valued τ-function for this hierarchy. In addition, we construct its Hamiltonian structures by using the Adler-Dickey-Gelfand method. As a byproduct of these constructions, we show that the coupled KP hierarchy, defined by Casati and Ortenzi [J. Geom. Phys. 56, 418-449 (2006)], has at least n-“basic” different local bi-Hamiltonian structures. Finally, via the construction of the second Hamiltonian structures, we obtain some local matrix, or Frobenius algebra-valued, generalizations of classical W-algebras.

1.
M.
Adler
, “
On a trace functional for formal pseudodifferential operators and the symplectic structure of the Korteweg-de Vries type equations
,”
Invent. Math.
50
,
219
248
(
1979
).
2.
I.
Bakas
, “
Higher spin fields and the Gelfand-Dickey algebra
,”
Commun. Math. Phys.
123
,
627
639
(
1989
).
3.
A.
Bilal
, “
Non-local matrix generalizations of W-algebras
,”
Commun. Math. Phys.
170
,
117
150
(
1995
).
4.
P.
Casati
and
G.
Ortenzi
, “
New integrable hierarchies from vertex operator representations of polynomial Lie algebras
,”
J. Geom. Phys.
56
,
418
449
(
2006
).
5.
E.
Date
,
M.
Jimbo
,
M.
Kashiwara
, and
T.
Miwa
, “
Transformation groups for soliton equations
,” in
Proceedings of R.I.M.S. Symposium on Nonlinear Integrable Systems–Classical Theory and Quantum Theory
(
World Scientific
,
1983
), pp.
39
119
.
6.
L. A.
Dickey
, “
On Hamiltonian and Lagrangian formalisms for the KP hierarchy of integrable equations
,”
Ann. N. Y. Acad. Sci.
491
,
131
148
(
1987
).
7.
L. A.
Dickey
, “
Lectures on classical W-algebras
,”
Acta Appl. Math.
47
,
243
321
(
1997
).
8.
L. A.
Dickey
,
Soliton Equations and Hamiltonian Systems
,
Advanced Series in Mathematical Physics
Vol.
26
, 2nd ed. (
World Scientific
,
2003
).
9.
B.
Dubrovin
,
Geometry of 2D Topological Field Theories
,
Lecture Notes in Mathematics
Vol.
1620
(
Springer
,
1996
), pp.
120
348
.
10.
P.
Di Franscessco
,
C.
Itzykson
, and
J. B.
Zuber
, “
Classical W-algebras
,”
Commun. Math. Phys.
140
,
543
567
(
1991
).
11.
A. P.
Fordy
,
A. G.
Reyman
, and
M. A.
Semenov-Tian-Shansky
, “
Classical r-matrices and compatible Poisson brackets for coupled KdV systems
,”
Lett. Math. Phys.
17
,
25
29
(
1989
).
12.
I. M.
Gelfand
and
L. A.
Dickey
, “
Family of Hamiltonian structures connected with integrable non-linear equations
,” preprint, IPM, Moscow (
1978
) (in Russian)
[English version in
I. M.
Gelfand
and
L. A.
Dickey
,
Collected Papers of I. M. Gelfand
(
Springer-Verlag
,
1987
), Vol.
1
, pp.
625
646
].
13.
R.
Hirota
,
X. B.
Hu
, and
X. Y.
Tang
, “
A vector potential KdV equation and vector Ito equation: Soliton solutions, bilinear Bäcklund transformations and Lax pairs.
,”
J. Math. Anal. Appl.
288
(
1
),
326
348
(
2003
).
14.
B. A.
Kupershmidt
,
KP or mKP: Noncommutative Mathematics of Lagrangian, Hamiltonian, and Integrable Systems
,
Mathematical Surveys and Monographs
(
American Mathematical Society
,
2000
), Vol.
78
.
15.
J.
van de Leur
, “
Bäcklund transformations for new integrable hierarchies related to the polynomial Lie algebra g l ( n )
,”
J. Geom. Phys.
57
,
435
447
(
2007
).
16.
W. X.
Ma
and
B.
Fuchssteinery
, “
The bi-Hamiltonian structure of the perturbation equations of KdV hierarchy
,”
Phys. Lett. A
213
,
49
55
(
1996
).
17.
P. J.
Olver
and
V. V.
Sokolov
, “
Integrable evolution equations on associative algebras
,”
Commun. Math. Phys.
2
,
245
268
(
1998
).
18.
A. O.
Radul
, “
Two series of Hamiltonian structures for the hierarchy of Kadomtsev-Petviashvili equations
,” in
Applied Methods of Nonlinear Analysis and Control
, edited by
Mironov
,
Moroz
, and
Tshernyatin
(
Moscow State University
,
Moscow
,
1987
), pp.
149
157
.
19.
M.
Sato
, “
Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds
,”
RIMS Kokyuroku
439
,
30
46
(
1981
).
20.
I. A. B.
Strachan
, “
The Moyal bracket and the dispersionless limit of the KP hierarchy
,”
J. Phys. A: Math. Gen.
28
,
1967
1975
(
1995
).
21.
I. A. B.
Strachan
and
D.
Zuo
, “
Frobenius manifolds and Frobenius algebra-valued integrable systems
,” preprint arXiv:1403.0021.
22.
Y.
Watanabe
, “
Hamiltonian structure of Sato’s hierarchy of KP equations and a coadjoint orbit of a certain formal Lie group
,”
Lett. Math. Phys.
7
(
2
),
99
106
(
1983
).
23.
D.
Zuo
, “
On the Kuperschmidt-Wilson theorem for the Moyal-Kadomtsev-Petviasfvili hierarchy
,”
Inverse Probl.
22
,
1959
1966
(
2006
).
24.
D.
Zuo
, “
Local matrix generalizations of W-algebras
” (unpublished); e-print arXiv:1401.2216v1.
25.
D.
Zuo
, “
The Frobenius-Virasoro algebra and Euler equations
,”
J. Geom. Phys.
86
,
203
210
(
2014
).
26.
H.
Zhang
and
D.
Zuo
, “
Hamiltonian structures of the constrained F -valued KP hierarchy
,”
Rep. Math. Phys.
76
,
116
129
(
2015
).
27.
K-L.
Tian
and
D.
Zuo
, “
Free field realizations of some local matrix W-algebras
” (unpublished).
28.

A skew mapping H:Ω1V is said to be Hamiltonian if (1) HΩ1V is a Lie subalgebra and (2) the 2-form ω defined by ω(H(X),H(Y))=H(X),Y is closed.

You do not currently have access to this content.