Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Methods and applications of genome-wide profiling of DNA damage and rare mutations

Abstract

DNA damage is a threat to genome integrity and can be a cause of many human diseases, owing to either changes in the chemical structure of DNA or conversion of the damage into a mutation, that is, a permanent change in DNA sequence. Determining the exact positions of DNA damage and ensuing mutations in the genome are important for identifying mechanisms of disease aetiology when characteristic mutations are prevalent and probably causative in a particular disease. However, this approach is challenging particularly when levels of DNA damage are low, for example, as a result of chronic exposure to environmental agents or certain endogenous processes, such as the generation of reactive oxygen species. Over the past few years, a comprehensive toolbox of genome-wide methods has been developed for the detection of DNA damage and rare mutations at single-nucleotide resolution in mammalian cells. Here, we review and compare these methods, describe their current applications and discuss future research questions that can now be addressed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The steps involved in mutagenesis and the methodologies for DNA damage mapping and mutation analysis.
Fig. 2: Intermediate-resolution methods for genome-wide analysis of DNA damage.
Fig. 3: Mapping of DNA strand breaks at single-nucleotide resolution.
Fig. 4: Methods using excision repair enzymes for mapping damaged DNA bases at single-nucleotide resolution.
Fig. 5: Methods to localize DNA damage by primer extension to the lesion site.
Fig. 6: Detecting rare mutations by single-cell whole-genome sequencing.
Fig. 7: Duplex sequencing approaches.

Similar content being viewed by others

References

  1. Tubbs, A. & Nussenzweig, A. Endogenous DNA damage as a source of genomic instability in cancer. Cell 168, 644–656 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rosendahl Huber, A., Van Hoeck, A. & Van Boxtel, R. The mutagenic impact of environmental exposures in human cells and cancer: imprints through time. Front. Genet. 12, 760039 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Barnes, J. L., Zubair, M., John, K., Poirier, M. C. & Martin, F. L. Carcinogens and DNA damage. Biochem. Soc. Trans. 46, 1213–1224 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lindahl, T. R. DNA fragility and repair: some personal recollections. Annu. Rev. Biochem. 92, 1–13 (2023).

    Article  CAS  PubMed  Google Scholar 

  5. Dizdaroglu, M., Jaruga, P., Birincioglu, M. & Rodriguez, H. Free radical-induced damage to DNA: mechanisms and measurement. Free Radic. Biol. Med. 32, 1102–1115 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Wallace, S. S. DNA glycosylases search for and remove oxidized DNA bases. Env. Mol. Mutagen. 54, 691–704 (2013).

    Article  CAS  Google Scholar 

  7. Tsao, N., Schärer, O. D. & Mosammaparast, N. The complexity and regulation of repair of alkylation damage to nucleic acids. Crit. Rev. Biochem. Mol. Biol. 56, 125–136 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Blair, I. A. Lipid hydroperoxide-mediated DNA damage. Exp. Gerontol. 36, 1473–1481 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Guengerich, F. P. & Ghodke, P. P. Etheno adducts: from tRNA modifications to DNA adducts and back to miscoding ribonucleotides. Genes Env. 43, 24 (2021).

    Article  CAS  Google Scholar 

  10. Knutson, C. G. et al. Oxidation and glycolytic cleavage of etheno and propano DNA base adducts. Biochemistry 48, 800–809 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Henkler, F., Stolpmann, K. & Luch, A. Exposure to polycyclic aromatic hydrocarbons: bulky DNA adducts and cellular responses. Exp. Suppl. 101, 107–131 (2012).

    PubMed  Google Scholar 

  12. Felton, J. S. et al. Mutagenic potency of food-derived heterocyclic amines. Mutat. Res. 616, 90–94 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Turesky, R. J. Formation and biochemistry of carcinogenic heterocyclic aromatic amines in cooked meats. Toxicol. Lett. 168, 219–227 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Skipper, P. L. & Tannenbaum, S. R. Molecular dosimetry of aromatic amines in human populations. Env. Health Perspect. 102, 17–21 (1994).

    CAS  Google Scholar 

  15. Park, H. et al. Crystal structure of a DNA decamer containing a cis-syn thymine dimer. Proc. Natl Acad. Sci. USA 99, 15965–15970 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Richard, E. G. The science and (lost) art of psoralen plus UVA phototherapy. Dermatol. Clin. 38, 11–23 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Andres, C. M. C., Lastra, J. M. P., Juan, C. A., Plou, F. J. & Perez-Lebena, E. Chemical insights into oxidative and nitrative modifications of DNA. Int. J. Mol. Sci. 24, 15240 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jackson, A. L. & Loeb, L. A. The contribution of endogenous sources of DNA damage to the multiple mutations in cancer. Mutat. Res. 477, 7–21 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Beckman, K. B. & Ames, B. N. Oxidative decay of DNA. J. Biol. Chem. 272, 19633–19636 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Pfeifer, G. P. Mutagenesis at methylated CpG sequences. Curr. Top. Microbiol. Immunol. 301, 259–281 (2006).

    CAS  PubMed  Google Scholar 

  21. Swanton, C., McGranahan, N., Starrett, G. J. & Harris, R. S. APOBEC enzymes: mutagenic fuel for cancer evolution and heterogeneity. Cancer Discov. 5, 704–712 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, Y. et al. APOBEC mutagenesis is a common process in normal human small intestine. Nat. Genet. 55, 246–254 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhou, Z. X., Williams, J. S., Lujan, S. A. & Kunkel, T. A. Ribonucleotide incorporation into DNA during DNA replication and its consequences. Crit. Rev. Biochem. Mol. Biol. 56, 109–124 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pfeifer, G. P. How the environment shapes cancer genomes. Curr. Opin. Oncol. 27, 71–77 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Guo, C., Ma, X., Gao, F. & Guo, Y. Off-target effects in CRISPR/Cas9 gene editing. Front. Bioeng. Biotechnol. 11, 1143157 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Atkins, A. et al. Off-target analysis in gene editing and applications for clinical translation of CRISPR/Cas9 in HIV-1 therapy. Front. Genome Ed. 3, 673022 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Schmeiser, H. H. et al. Exceptionally long-term persistence of DNA adducts formed by carcinogenic aristolochic acid I in renal tissue from patients with aristolochic acid nephropathy. Int. J. Cancer 135, 502–507 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Aitken, S. J. et al. Pervasive lesion segregation shapes cancer genome evolution. Nature 583, 265–270 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ljungman, M. The transcription stress response. Cell Cycle 6, 2252–2257 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Lans, H., Hoeijmakers, J. H. J., Vermeulen, W. & Marteijn, J. A. The DNA damage response to transcription stress. Nat. Rev. Mol. Cell Biol. 20, 766–784 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Milano, L., Gautam, A. & Caldecott, K. W. DNA damage and transcription stress. Mol. Cell 84, 70–79 (2024). This review summarizes how DNA damage in transcribed genes triggers transcription stress and a DNA damage response.

    Article  CAS  PubMed  Google Scholar 

  32. Pfeifer, G. P., Drouin, R., Riggs, A. D. & Holmquist, G. P. Binding of transcription factors creates hot spots for UV photoproducts in vivo. Mol. Cell Biol. 12, 1798–1804 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Pfeifer, G. P., Drouin, R., Riggs, A. D. & Holmquist, G. P. In vivo mapping of a DNA adduct at nucleotide resolution: detection of pyrimidine (6-4) pyrimidone photoproducts by ligation-mediated polymerase chain reaction. Proc. Natl Acad. Sci. USA 88, 1374–1378 (1991). This study reports the first analysis of a specific type of DNA damage in human cells at single-nucleotide resolution.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Denissenko, M. F., Pao, A., Tang, M. & Pfeifer, G. P. Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science 274, 430–432 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Rodriguez, H., Holmquist, G. P., D’Agostino, R. Jr., Keller, J. & Akman, S. A. Metal ion-dependent hydrogen peroxide-induced DNA damage is more sequence specific than metal specific. Cancer Res. 57, 2394–2403 (1997).

    CAS  PubMed  Google Scholar 

  36. Martus, H. J., Dolle, M. E., Gossen, J. A., Boerrigter, M. E. & Vijg, J. Use of transgenic mouse models for studying somatic mutations in aging. Mutat. Res. 338, 203–213 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Perera, F. P. Molecular epidemiology and prevention of cancer. Env. Health Perspect. 103, 233–236 (1995).

    Google Scholar 

  38. Kucab, J. E., Phillips, D. H. & Arlt, V. M. Linking environmental carcinogen exposure to TP53 mutations in human tumours using the human TP53 knock-in (Hupki) mouse model. FEBS J. 277, 2567–2583 (2010).

    CAS  PubMed  Google Scholar 

  39. Mallory, X. F., Edrisi, M., Navin, N. & Nakhleh, L. Methods for copy number aberration detection from single-cell DNA-sequencing data. Genome Biol. 21, 208 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Amente, S. et al. Genome-wide mapping of 8-oxo-7,8-dihydro-2’-deoxyguanosine reveals accumulation of oxidatively-generated damage at DNA replication origins within transcribed long genes of mammalian cells. Nucleic Acids Res. 47, 221–236 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Garcia-Nieto, P. E. et al. Carcinogen susceptibility is regulated by genome architecture and predicts cancer mutagenesis. EMBO J. 36, 2829–2843 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zavala, A. G., Morris, R. T., Wyrick, J. J. & Smerdon, M. J. High-resolution characterization of CPD hotspot formation in human fibroblasts. Nucleic Acids Res. 42, 893–905 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Gorini, F. et al. The genomic landscape of 8-oxodG reveals enrichment at specific inherently fragile promoters. Nucleic Acids Res. 48, 4309–4324 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Teng, Y. et al. A novel method for the genome-wide high resolution analysis of DNA damage. Nucleic Acids Res. 39, e10 (2011).

    Article  PubMed  Google Scholar 

  45. Gregoire, M. C. et al. Quantification and genome-wide mapping of DNA double-strand breaks. DNA Repair 48, 63–68 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Poetsch, A. R., Boulton, S. J. & Luscombe, N. M. Genomic landscape of oxidative DNA damage and repair reveals regioselective protection from mutagenesis. Genome Biol. 19, 215 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gilat, N. et al. From single-molecule to genome-wide mapping of DNA lesions: repair-assisted damage detection sequencing. Biophys. Rep. https://doi.org/10.1016/j.bpr.2021.100017 (2021).

  48. Ding, Y., Fleming, A. M. & Burrows, C. J. Sequencing the mouse genome for the oxidatively modified base 8-oxo-7,8-dihydroguanine by OG-seq. J. Am. Chem. Soc. 139, 2569–2572 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tang, F., Yuan, J., Yuan, B. F. & Wang, Y. DNA-protein cross-linking sequencing for genome-wide mapping of thymidine glycol. J. Am. Chem. Soc. 144, 454–462 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fang, Y. & Zou, P. Genome-wide mapping of oxidative DNA damage via engineering of 8-oxoguanine DNA glycosylase. Biochemistry 59, 85–89 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Zhao, B., Rothenberg, E., Ramsden, D. A. & Lieber, M. R. The molecular basis and disease relevance of non-homologous DNA end joining. Nat. Rev. Mol. Cell Biol. 21, 765–781 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Arter, M. & Keeney, S. Divergence and conservation of the meiotic recombination machinery. Nat. Rev. Genet. 25, 309–325 (2024).

    Article  CAS  PubMed  Google Scholar 

  53. van de Kamp, G., Heemskerk, T., Kanaar, R. & Essers, J. DNA double strand break repair pathways in response to different types of ionizing radiation. Front. Genet. 12, 738230 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wang, G. & Vasquez, K. M. Dynamic alternative DNA structures in biology and disease. Nat. Rev. Genet. 24, 211–234 (2023).

    Article  CAS  PubMed  Google Scholar 

  55. Crosetto, N. et al. Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing. Nat. Methods 10, 361–365 (2013). This study describes the first genome-wide approach to map DNA double-strand breaks at single-nucleotide resolution by a method the authors termed BLESS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lensing, S. V. et al. DSBCapture: in situ capture and sequencing of DNA breaks. Nat. Methods 13, 855–857 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Canela, A. et al. DNA breaks and end resection measured genome-wide by end sequencing. Mol. Cell 63, 898–911 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yan, W. X. et al. BLISS is a versatile and quantitative method for genome-wide profiling of DNA double-strand breaks. Nat. Commun. 8, 15058 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bouwman, B. A. M. et al. Genome-wide detection of DNA double-strand breaks by in-suspension BLISS. Nat. Protoc. 15, 3894–3941 (2020).

    Article  CAS  PubMed  Google Scholar 

  60. Biernacka, A. et al. High-resolution, ultrasensitive and quantitative DNA double-strand break labeling in eukaryotic cells using i-BLESS. Nat. Protoc. 16, 1034–1061 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Dobbs, F. M. et al. Precision digital mapping of endogenous and induced genomic DNA breaks by INDUCE-seq. Nat. Commun. 13, 3989 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chiarle, R. et al. Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells. Cell 147, 107–119 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Caldecott, K. W. Causes and consequences of DNA single-strand breaks. Trends Biochem. Sci. 49, 68–78 (2024).

    Article  CAS  PubMed  Google Scholar 

  64. Cao, H. et al. Novel approach reveals genomic landscapes of single-strand DNA breaks with nucleotide resolution in human cells. Nat. Commun. 10, 5799 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sriramachandran, A. M. et al. Genome-wide nucleotide-resolution mapping of DNA replication patterns, single-strand breaks, and lesions by GLOE-seq. Mol. Cell 78, 975–985.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wu, W. et al. Neuronal enhancers are hotspots for DNA single-strand break repair. Nature 593, 440–444 (2021). This paper shows that DNA single-strand breaks are localized at enhancer regions in neurons and suggests that continuous DNA breakage occurs in these long-lived postmitotic cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Beard, W. A., Horton, J. K., Prasad, R. & Wilson, S. H. Eukaryotic base excision repair: new approaches shine light on mechanism. Annu. Rev. Biochem. 88, 137–162 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Selby, C. P., Lindsey-Boltz, L. A., Li, W. & Sancar, A. Molecular mechanisms of transcription-coupled repair. Annu. Rev. Biochem. 92, 115–144 (2023).

    Article  CAS  PubMed  Google Scholar 

  69. Marteijn, J. A., Lans, H., Vermeulen, W. & Hoeijmakers, J. H. Understanding nucleotide excision repair and its roles in cancer and ageing. Nat. Rev. Mol. Cell Biol. 15, 465–481 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Bryan, D. S., Ransom, M., Adane, B., York, K. & Hesselberth, J. R. High resolution mapping of modified DNA nucleobases using excision repair enzymes. Genome Res. 24, 1534–1542 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mao, P., Smerdon, M. J., Roberts, S. A. & Wyrick, J. J. Chromosomal landscape of UV damage formation and repair at single-nucleotide resolution. Proc. Natl Acad. Sci. USA 113, 9057–9062 (2016). This paper introduces CPD-seq, a method for mapping UV-induced CPDs at single-nucleotide resolution.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Laughery, M. F. et al. Atypical UV photoproducts induce non-canonical mutation classes associated with driver mutations in melanoma. Cell Rep. 33, 108401 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mao, P. et al. Genome-wide maps of alkylation damage, repair, and mutagenesis in yeast reveal mechanisms of mutational heterogeneity. Genome Res. 27, 1674–1684 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Duan, M. et al. High-resolution mapping demonstrates inhibition of DNA excision repair by transcription factors. eLife 11, e73943 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jin, S. G., Meng, Y., Johnson, J., Szabo, P. E. & Pfeifer, G. P. Concordance of hydrogen peroxide-induced 8-oxo-guanine patterns with two cancer mutation signatures of upper GI tract tumors. Sci. Adv. 8, eabn3815 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jin, S. G., Pettinga, D., Johnson, J., Li, P. & Pfeifer, G. P. The major mechanism of melanoma mutations is based on deamination of cytosine in pyrimidine dimers as determined by circle-damage-sequencing. Sci. Adv. 7, eabi6508 (2021). This study reports the development of CD-seq for mapping of DNA damage in mammalian cells at single-base resolution; it shows that a major mechanism for formation of mutations in melanoma involves deamination of cytosine within pyrimidine dimers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hu, J., Adar, S., Selby, C. P., Lieb, J. D. & Sancar, A. Genome-wide analysis of human global and transcription-coupled excision repair of UV damage at single-nucleotide resolution. Genes Dev. 29, 948–960 (2015). This study introduces a new method for genome-wide mapping of DNA damage and repair events in mammalian cells based on sequencing of DNA fragments released by the nucleotide excision repair process.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Compe, E. & Egly, J. M. Nucleotide excision repair and transcriptional regulation: TFIIH and beyond. Annu. Rev. Biochem. 85, 265–290 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Li, W. et al. Human genome-wide repair map of DNA damage caused by the cigarette smoke carcinogen benzo[a]pyrene. Proc. Natl Acad. Sci. USA 114, 6752–6757 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hu, J., Lieb, J. D., Sancar, A. & Adar, S. Cisplatin DNA damage and repair maps of the human genome at single-nucleotide resolution. Proc. Natl Acad. Sci. USA 113, 11507–11512 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hu, J., Adebali, O., Adar, S. & Sancar, A. Dynamic maps of UV damage formation and repair for the human genome. Proc. Natl Acad. Sci. USA 114, 6758–6763 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jiang, Y. et al. Quantification and mapping of alkylation in the human genome reveal single nucleotide resolution precursors of mutational signatures. ACS Cent. Sci. 9, 362–372 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Premi, S. et al. Genomic sites hypersensitive to ultraviolet radiation. Proc. Natl Acad. Sci. USA 116, 24196–24205 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Salk, J. J., Schmitt, M. W. & Loeb, L. A. Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations. Nat. Rev. Genet. 19, 269–285 (2018). This review provides a comprehensive summary of genome-wide DNA sequencing-based methods for mutation analysis, with emphasis on the technical challenges inherent to these approaches.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Marchetti, F. et al. Error-corrected next generation sequencing — promises and challenges for genotoxicity and cancer risk assessment. Mutat. Res. Rev. Mutat. Res. 792, 108466 (2023).

    Article  CAS  PubMed  Google Scholar 

  86. Menon, V. & Brash, D. E. Next-generation sequencing methodologies to detect low-frequency mutations: “Catch me if you can”. Mutat. Res. Rev. Mutat. Res. 792, 108471 (2023).

    Article  CAS  PubMed  Google Scholar 

  87. Fowler, J. C. & Jones, P. H. Somatic mutation: what shapes the mutational landscape of normal epithelia? Cancer Discov. 12, 1642–1655 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Martincorena, I. et al. Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348, 880–886 (2015). This study uses ultradeep sequencing of human skin biopsies to show that sun-exposed skin contains thousands of mutant cell clones, with more than a quarter of cells carrying cancer-causing mutations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fowler, J. C. et al. Selection of oncogenic mutant clones in normal human skin varies with body site. Cancer Discov. 11, 340–361 (2021).

    Article  CAS  PubMed  Google Scholar 

  90. Hiatt, J. B., Patwardhan, R. P., Turner, E. H., Lee, C. & Shendure, J. Parallel, tag-directed assembly of locally derived short sequence reads. Nat. Methods 7, 119–122 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kinde, I., Wu, J., Papadopoulos, N., Kinzler, K. W. & Vogelstein, B. Detection and quantification of rare mutations with massively parallel sequencing. Proc. Natl Acad. Sci. USA 108, 9530–9535 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Zou, X. et al. Validating the concept of mutational signatures with isogenic cell models. Nat. Commun. 9, 1744 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Kucab, J. E. et al. A compendium of mutational signatures of environmental agents. Cell 177, 821–836.e16 (2019). This study uses single-cell cloning of human induced pluripotent stem cells exposed to a compendium of mutagens to establish defined mutation signatures of carcinogenic compounds.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lee-Six, H. et al. The landscape of somatic mutation in normal colorectal epithelial cells. Nature 574, 532–537 (2019).

    Article  CAS  PubMed  Google Scholar 

  95. Li, R. et al. A body map of somatic mutagenesis in morphologically normal human tissues. Nature 597, 398–403 (2021).

    Article  CAS  PubMed  Google Scholar 

  96. Martincorena, I. et al. Somatic mutant clones colonize the human esophagus with age. Science 362, 911–917 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yoshida, K. et al. Tobacco smoking and somatic mutations in human bronchial epithelium. Nature 578, 266–272 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gundry, M., Li, W., Maqbool, S. B. & Vijg, J. Direct, genome-wide assessment of DNA mutations in single cells. Nucleic Acids Res. 40, 2032–2040 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Zong, C., Lu, S., Chapman, A. R. & Xie, X. S. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science 338, 1622–1626 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lodato, M. A. et al. Somatic mutation in single human neurons tracks developmental and transcriptional history. Science 350, 94–98 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lu, S. et al. Probing meiotic recombination and aneuploidy of single sperm cells by whole-genome sequencing. Science 338, 1627–1630 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Milholland, B. et al. Differences between germline and somatic mutation rates in humans and mice. Nat. Commun. 8, 15183 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Choudhury, S. et al. Somatic mutations in single human cardiomyocytes reveal age-associated DNA damage and widespread oxidative genotoxicity. Nat. Aging 2, 714–725 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Gonzalez-Pena, V. et al. Accurate genomic variant detection in single cells with primary template-directed amplification. Proc. Natl Acad. Sci. USA 118, e2024176118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chen, C. et al. Single-cell whole-genome analyses by Linear Amplification via Transposon Insertion (LIANTI). Science 356, 189–194 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kennedy, S. R. et al. Detecting ultralow-frequency mutations by duplex sequencing. Nat. Protoc. 9, 2586–2606 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Schmitt, M. W. et al. Detection of ultra-rare mutations by next-generation sequencing. Proc. Natl Acad. Sci. USA 109, 14508–14513 (2012). This study reports the development of duplex sequencing for mutation analysis as an approach to greatly reduce sequencing errors by independently tagging and sequencing each of the two strands of a DNA duplex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hoang, M. L. et al. Genome-wide quantification of rare somatic mutations in normal human tissues using massively parallel sequencing. Proc. Natl Acad. Sci. USA 113, 9846–9851 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Abascal, F. et al. Somatic mutation landscapes at single-molecule resolution. Nature 593, 405–410 (2021). This study uses NanoSeq for analysis of mutations in dividing and non-dividing cells across several tissues, showing that neurons accumulate somatic mutations at a constant rate throughout life without cell division.

    Article  CAS  PubMed  Google Scholar 

  110. Ueda, S. et al. A quantification method of somatic mutations in normal tissues and their accumulation in pediatric patients with chemotherapy. Proc. Natl Acad. Sci. USA 119, e2123241119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Maslov, A. Y. et al. Single-molecule, quantitative detection of low-abundance somatic mutations by high-throughput sequencing. Sci. Adv. 8, eabm3259 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bae, J. H. et al. Single duplex DNA sequencing with CODEC detects mutations with high sensitivity. Nat. Genet. 55, 871–879 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yu, Z. et al. Genetic variation across and within individuals. Nat. Rev. Genet. https://doi.org/10.1038/s41576-024-00709-x (2024).

  114. Gonzalez-Perez, A., Sabarinathan, R. & Lopez-Bigas, N. Local determinants of the mutational landscape of the human genome. Cell 177, 101–114 (2019). This review summarizes how DNA damage formation and repair are affected by local parameters, including chromatin structure, nucleosomes, transcription factors and replication timing, which in turn influence mutation rates.

    Article  CAS  PubMed  Google Scholar 

  115. Gothe, H. J. et al. Spatial chromosome folding and active transcription drive DNA fragility and formation of oncogenic MLL translocations. Mol. Cell 75, 267–283.e12 (2019).

    Article  CAS  PubMed  Google Scholar 

  116. Canela, A. et al. Topoisomerase II-induced chromosome breakage and translocation is determined by chromosome architecture and transcriptional activity. Mol. Cell 75, 252–266.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Canela, A. et al. Genome organization drives chromosome fragility. Cell 170, 507–521.e18 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Dellino, G. I. et al. Release of paused RNA polymerase II at specific loci favors DNA double-strand-break formation and promotes cancer translocations. Nat. Genet. 51, 1011–1023 (2019).

    Article  CAS  PubMed  Google Scholar 

  119. Wang, K. & Taylor, J. A. Modulation of cyclobutane thymine photodimer formation in T11-tracts in rotationally phased nucleosome core particles and DNA minicircles. Nucleic Acids Res. 45, 7031–7041 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Becker, M. M. & Wang, J. C. Use of light for footprinting DNA in vivo. Nature 309, 682–687 (1984).

    Article  CAS  PubMed  Google Scholar 

  121. Tornaletti, S. & Pfeifer, G. P. UV light as a footprinting agent: modulation of UV-induced DNA damage by transcription factors bound at the promoters of three human genes. J. Mol. Biol. 249, 714–728 (1995).

    Article  CAS  PubMed  Google Scholar 

  122. Sivapragasam, S. et al. CTCF binding modulates UV damage formation to promote mutation hot spots in melanoma. EMBO J. 40, e107795 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Mao, P. et al. ETS transcription factors induce a unique UV damage signature that drives recurrent mutagenesis in melanoma. Nat. Commun. 9, 2626 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Elliott, K., Singh, V. K., Bostrom, M. & Larsson, E. Base-resolution UV footprinting by sequencing reveals distinctive damage signatures for DNA-binding proteins. Nat. Commun. 14, 2701 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Elliott, K. et al. Elevated pyrimidine dimer formation at distinct genomic bases underlies promoter mutation hotspots in UV-exposed cancers. PLoS Genet. 14, e1007849 (2018). Together with Mao et al. (2018), this study shows that the distribution of UV-induced cyclobutane pyrimidine dimers across the human genome is strongly enhanced at the binding sites of ETS transcription factors, leading to the emergence of recurrent mutations in melanoma.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Fredriksson, N. J. et al. Recurrent promoter mutations in melanoma are defined by an extended context-specific mutational signature. PLoS Genet. 13, e1006773 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Selvam, K., Sivapragasam, S., Poon, G. M. K. & Wyrick, J. J. Detecting recurrent passenger mutations in melanoma by targeted UV damage sequencing. Nat. Commun. 14, 2702 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Sabarinathan, R., Mularoni, L., Deu-Pons, J., Gonzalez-Perez, A. & Lopez-Bigas, N. Nucleotide excision repair is impaired by binding of transcription factors to DNA. Nature 532, 264–267 (2016).

    Article  CAS  PubMed  Google Scholar 

  129. Poulos, R. C. et al. Functional mutations form at CTCF-cohesin binding sites in melanoma due to uneven nucleotide excision repair across the motif. Cell Rep. 17, 2865–2872 (2016).

    Article  CAS  PubMed  Google Scholar 

  130. Frigola, J., Sabarinathan, R., Gonzalez-Perez, A. & Lopez-Bigas, N. Variable interplay of UV-induced DNA damage and repair at transcription factor binding sites. Nucleic Acids Res. 49, 891–901 (2021).

    Article  CAS  PubMed  Google Scholar 

  131. Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. He, Y. F. et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333, 1303–1307 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Hahn, M. A. et al. Reprogramming of DNA methylation at NEUROD2-bound sequences during cortical neuron differentiation. Sci. Adv. 5, eaax0080 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Reid, D. A. et al. Incorporation of a nucleoside analog maps genome repair sites in postmitotic human neurons. Science 372, 91–94 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Lodato, M. A. et al. Aging and neurodegeneration are associated with increased mutations in single human neurons. Science 359, 555–559 (2018). This study uses single-cell, whole-genome sequencing to identify somatic single-nucleotide variants in 161 single neurons from the human prefrontal cortex or hippocampus, showing that somatic mutations increase with age and with neurodegenerative disease.

    Article  CAS  PubMed  Google Scholar 

  136. Miller, M. B. et al. Somatic genomic changes in single Alzheimer’s disease neurons. Nature 604, 714–722 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Nissanka, N. & Moraes, C. T. Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease. FEBS Lett. 592, 728–742 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Harding, O., Holzer, E., Riley, J. F., Martens, S. & Holzbaur, E. L. F. Damaged mitochondria recruit the effector NEMO to activate NF-κB signaling. Mol. Cell 83, 3188–3204.e7 (2023).

    Article  CAS  PubMed  Google Scholar 

  139. Wei, P. C. et al. Long neural genes harbor recurrent DNA break clusters in neural stem/progenitor cells. Cell 164, 644–655 (2016). This study identifies recurrent DNA double-strand breaks in the gene bodies of long, neuron-specific genes, which suggests that DNA breaks might affect neurodevelopment and neuronal functions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Wei, P. C. et al. Three classes of recurrent DNA break clusters in brain progenitors identified by 3D proximity-based break joining assay. Proc. Natl Acad. Sci. USA 115, 1919–1924 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Schwer, B. et al. Transcription-associated processes cause DNA double-strand breaks and translocations in neural stem/progenitor cells. Proc. Natl Acad. Sci. USA 113, 2258–2263 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013). This landmark study establishes a large compendium of mutation signatures that are characteristic for different human malignancies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Harris, R. S., Petersen-Mahrt, S. K. & Neuberger, M. S. RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. Mol. Cell 10, 1247–1253 (2002).

    Article  CAS  PubMed  Google Scholar 

  144. Seplyarskiy, V. B. & Sunyaev, S. The origin of human mutation in light of genomic data. Nat. Rev. Genet. 22, 672–686 (2021).

    Article  CAS  PubMed  Google Scholar 

  145. Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Koh, G. C. C. et al. The chemotherapeutic drug CX-5461 is a potent mutagen in cultured human cells. Nat. Genet. 56, 23–26 (2024).

    Article  CAS  PubMed  Google Scholar 

  147. Degasperi, A. et al. Substitution mutational signatures in whole-genome-sequenced cancers in the UK population. Science 376, abl9283 (2022).

    Article  Google Scholar 

  148. You, Y. H. et al. Cyclobutane pyrimidine dimers are responsible for the vast majority of mutations induced by UVB irradiation in mammalian cells. J. Biol. Chem. 276, 44688–44694 (2001).

    Article  CAS  PubMed  Google Scholar 

  149. Johnson, R. E., Kondratick, C. M., Prakash, S. & Prakash, L. hRAD30 mutations in the variant form of xeroderma pigmentosum. Science 285, 263–265 (1999).

    Article  CAS  PubMed  Google Scholar 

  150. Masutani, C. et al. The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta. Nature 399, 700–704 (1999).

    Article  CAS  PubMed  Google Scholar 

  151. Jiang, N. & Taylor, J. S. In vivo evidence that UV-induced C → T mutations at dipyrimidine sites could result from the replicative bypass of cis-syn cyclobutane dimers or their deamination products. Biochemistry 32, 472–481 (1993).

    Article  CAS  PubMed  Google Scholar 

  152. Takasawa, K., Masutani, C., Hanaoka, F. & Iwai, S. Chemical synthesis and translesion replication of a cis-syn cyclobutane thymine-uracil dimer. Nucleic Acids Res. 32, 1738–1745 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Alexandrov, L. B. et al. Mutational signatures associated with tobacco smoking in human cancer. Science 354, 618–622 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Hecht, S. S. Lung carcinogenesis by tobacco smoke. Int. J. Cancer 131, 2724–2732 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Phillips, D. H. DNA adducts as markers of exposure and risk. Mutat. Res. 577, 284–292 (2005).

    Article  CAS  PubMed  Google Scholar 

  156. Blokzijl, F. et al. Tissue-specific mutation accumulation in human adult stem cells during life. Nature 538, 260–264 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Moore, L. et al. The mutational landscape of human somatic and germline cells. Nature 597, 381–386 (2021).

    Article  CAS  PubMed  Google Scholar 

  158. Brunner, S. F. et al. Somatic mutations and clonal dynamics in healthy and cirrhotic human liver. Nature 574, 538–542 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Colom, B. et al. Spatial competition shapes the dynamic mutational landscape of normal esophageal epithelium. Nat. Genet. 52, 604–614 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Pfeifer, G. P. Smoke signals in the DNA of normal lung cells. Nature 578, 224–226 (2020).

    Article  CAS  PubMed  Google Scholar 

  161. Perdomo, S. et al. The Mutographs biorepository: a unique genomic resource to study cancer around the world. Cell Genom. 4, 100500 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Jeppesen, D. K., Bohr, V. A. & Stevnsner, T. DNA repair deficiency in neurodegeneration. Prog. Neurobiol. 94, 166–200 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Konopka, A., Atkin, J. D. & Mitra, J. Editorial: Defective DNA damage response-repair axis in post-mitotic neurons in human health and neurodegenerative diseases. Front. Cell Neurosci. 16, 1009760 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Jaarsma, D. et al. Age-related neuronal degeneration: complementary roles of nucleotide excision repair and transcription-coupled repair in preventing neuropathology. PLoS Genet. 7, e1002405 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Zylka, M. J., Simon, J. M. & Philpot, B. D. Gene length matters in neurons. Neuron 86, 353–355 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work of the authors is supported by National Institutes of Health grant R01CA276031 to G.P.P.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of the manuscript.

Corresponding author

Correspondence to Gerd P. Pfeifer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks L. Alexandrov, who co-reviewed with S. Nandi; N. Crosetto; and E. Larsson, who co-reviewed with K. Elliott, for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Base excision repair

(BER). A DNA repair pathway that removes DNA bases with small chemical modifications and replaces them with the correct, unmodified bases.

Concatemerized DNA

A long DNA molecule consisting of linked, multiple copies of the same sequence.

Homologous recombination repair

A DNA repair pathway that corrects DNA double-strand breaks by using alignment and recombination of the broken DNA with an intact copy of the same sequence.

Mismatch repair

(MMR). A DNA repair pathway that excises mismatched DNA bases.

Nonhomologous end joining

(NHEJ). A DNA repair pathway that corrects DNA double-strand breaks by joining two broken ends.

Nucleotide excision repair

(NER). A DNA repair pathway that removes DNA bases with large chemical modifications and replaces them with the correct, unmodified bases.

Okazaki fragments

Short, 100–200-bp DNA fragments formed by lagging strand synthesis during DNA replication.

Unique molecular identifier

(UMI). A short DNA sequence that is added as a molecular barcode before PCR amplification to tag each molecule in a sequencing library.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pfeifer, G.P., Jin, SG. Methods and applications of genome-wide profiling of DNA damage and rare mutations. Nat Rev Genet (2024). https://doi.org/10.1038/s41576-024-00748-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41576-024-00748-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing