Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hydrogen splitting at a single phosphorus centre and its use for hydrogenation

Abstract

Catalytic processes are largely dominated by transition-metal complexes. Main-group compounds that can mimic the behaviour of the transition-metal complexes are of great interest due to their potential to substitute or complement transition metals in catalysis. While a few main-group molecular centres were shown to activate dihydrogen via the oxidative addition process, catalytic hydrogenation using these species has remained challenging. Here we report the synthesis, isolation and full characterization of the geometrically constrained phosphenium cation with the 2,6-bis(o-carborano)pyridine pincer-type ligand. Notably, this cation can activate the H–H bond by oxidative addition to a single PIII cationic centre, producing a dihydrophosphonium cation. This phosphenium cation is also capable of catalysing hydrogenation reactions of C=C double bonds and fused aromatic systems, making it a main-group compound that can both activate H2 at a single molecular main-group centre and be used for catalytic hydrogenation. This finding shows the potential of main-group compounds, in particular phosphorus-based compounds, to serve as metallomimetic hydrogenation catalysts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis and structures of 1-Cl, 1-OTf and [1+][B(C6F5)4].
Fig. 2: Electronic structure of 1+.
Fig. 3: Activation of H2 by 1+.
Fig. 4: Catalysis with [1+][B(C6F5)4].
Fig. 5: Mechanism of the catalysis.
Fig. 6: Computed hydrogenation mechanism.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information (experimental procedures, DFT calculations and characterization data). X-ray data are available free of charge from the Cambridge Crystallographic Data Centre under references CCDC-2267545 (1-Cl), CCDC-2267548 (1-OTf), CCDC-2267547 ([1+][B(C6F5)4]) and CCDC-2267546 ([1+-H2][B(C6F5)4]). These data can be obtained free of charge from The Cambridge Crystallographic Data Centre (www.ccdc.cam.ac.uk/data_request/cif). The Cartesian coordinates and energies of all optimized molecules are provided as *.xyz files.

References

  1. Power, P. P. Main-group elements as transition metals. Nature 463, 171–177 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Chu, T. & Nikonov, G. I. Oxidative addition and reductive elimination at main-group element centers. Chem. Rev. 118, 3608–3680 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Martin, D., Soleilhavoup, M. & Bertrand, G. Stable singlet carbenes as mimics for transition metal centers. Chem. Sci. 2, 389–399 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Frey, G. D., Lavallo, V., Donnadieu, B., Schoeller, W. W. & Bertrand, G. Facile splitting of hydrogen and ammonia by nucleophilic activation at a single carbon center. Science 316, 439–441 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Nesterov, V. et al. NHCs in main group chemistry. Chem. Rev. 118, 9678–9842 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Légaré, M.-A. et al. Nitrogen fixation and reduction at boron. Science 359, 896–900 (2018).

    Article  PubMed  Google Scholar 

  7. Dahcheh, F., Martin, D., Stephan, D. W. & Bertrand, G. Synthesis and reactivity of a CAAC–aminoborylene adduct: a hetero-allene or an organoboron isoelectronic with singlet carbenes. Angew. Chem. Int. Ed. 53, 13159–13163 (2014).

    Article  CAS  Google Scholar 

  8. Soleilhavoup, M. & Bertrand, G. Borylenes: an emerging class of compounds. Angew. Chem. Int. Ed. 56, 10282–10292 (2017).

    Article  CAS  Google Scholar 

  9. Légaré, M.-A., Pranckevicius, C. & Braunschweig, H. Metallomimetic chemistry of boron. Chem. Rev. 119, 823–8261 (2019).

    Article  Google Scholar 

  10. Hicks, J., Vasko, P., Goicoechea, J. M. & Aldridge, S. Synthesis, structure and reaction chemistry of a nucleophilic aluminyl anion. Nature 557, 92–95 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Hicks, J., Vasko, P., Goicoechea, J. M. & Aldridge, S. The aluminyl anion: a new generation of aluminium nucleophile. Angew. Chem. Int. Ed. 60, 1702–1713 (2021).

    Article  CAS  Google Scholar 

  12. Protchenko, A. V. et al. A stable two-coordinate acyclic silylene. J. Am. Chem. Soc. 134, 6500–6503 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Spikes, G. H., Fettinger, J. C. & Power, P. P. Facile activation of dihydrogen by an unsaturated heavier main group compound. J. Am. Chem. Soc. 127, 12232–12233 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Peng, Y., Ellis, B. D., Wang, X. & Power, P. P. Diarylstannylene activation of hydrogen or ammonia with arene elimination. J. Am. Chem. Soc. 130, 12268–12269 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Stephan, D. W. The broadening reach of frustrated Lewis pair chemistry. Science 354, aaf7229 (2016).

    Article  PubMed  Google Scholar 

  16. Stephan, D. W. Frustrated Lewis pairs: from concept to catalysis. Acc. Chem. Res. 48, 306–316 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Lipshultz, J. M., Li, G. & Radosevich, A. T. Main group redox catalysis of organopnictogens: vertical periodic trends and emerging opportunities in group 15. J. Am. Chem. Soc. 143, 1699–1721 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Abbenseth, J. & Goicoechea, J. M. Recent developments in the chemistry of nontrigonal pnictogen pincer compounds: from bonding to catalysis. Chem. Sci. 11, 9728–9740 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Arduengo III, A. J. et al. The synthesis, structure, and chemistry of 10-Pn-3 systems: tricoordinate hypervalent pnictogen compounds. J. Am. Chem. Soc. 109, 627–647 (1987).

    Article  Google Scholar 

  20. Dunn, N. L., Ha, M. & Radosevich, A. T. Main group redox catalysis: reversible PIII/PV redox cycling at a phosphorus platform. J. Am. Chem. Soc. 134, 11330–11333 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Zhao, W. et al. Reversible intermolecular E–H oxidative addition to a geometrically deformed and structurally dynamic phosphorous triamide. J. Am. Chem. Soc. 136, 17634–17644 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. King, A. J., Abbenseth, J. & Goicoechea, J. M. Reactivity of a strictly t-shaped phosphine ligated by an acridane derived NNN pincer ligand. Chem.Eur. J. 29, e202300818 (2023).

    Article  CAS  PubMed  Google Scholar 

  23. Abbenseth, J., Townrow, O. P. E. & Goicoechea, J. M. Thermoneutral NH bond activation of ammonia by a geometrically constrained phosphine. Angew. Chem. Int. Ed. 60, 23625–23629 (2021).

    Article  CAS  Google Scholar 

  24. Volodarsky, S. & Dobrovetsky, R. Ambiphilic geometrically constrained phosphenium cation. Chem. Commun. 54, 6931–6934 (2018).

    Article  CAS  Google Scholar 

  25. McCarthy, S. M. et al. Intermolecular N–H oxidative addition of ammonia, alkylamines, and arylamines to a planar σ3‑phosphorus compound via an entropy-controlled electrophilic mechanism. J. Am. Chem. Soc. 136, 4640–4650 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Lim, S. & Radosevich, A. T. Round-trip oxidative addition, ligand metathesis, and reductive elimination in a PIII/PV synthetic cycle. J. Am. Chem. Soc. 142, 16188–16193 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Chulsky, K., Malahov, I., Bawari, D. & Dobrovetsky, R. Metallomimetic chemistry of a cationic, geometrically constrained phosphine in the catalytic hydrodefluorination and amination of Ar–F bonds. J. Am. Chem. Soc. 145, 3786–3794 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Volodarsky, S., Bawari, D. & Dobrovetsky, R. Dual reactivity of a geometrically constrained phosphenium cation. Angew. Chem. Int. Ed. 61, e202208401 (2022).

    Article  CAS  Google Scholar 

  29. Zander, E. et al. Rational design of persistent phosphorus-centered singlet tetraradicals and their use in small-molecule activation. J. Am. Chem. Soc. 145, 14484–14497 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Birchall, N., Feil, C. M., Gediga, M., Nieger, M. & Gudat, D. Reversible cooperative dihydrogen binding and transfer with a bis-phosphenium complex of chromium. Chem. Sci. 11, 9571–9576 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gediga, M., Schlindwein, S. H., Bender, J., Nieger, M. & Gudat, D. Variable reactivity of a N-heterocyclic phosphenium complex: P–C bond activation or ‘abnormal’ deprotonation. Angew. Chem. Int. Ed. 56, 15718–15722 (2017).

    Article  CAS  Google Scholar 

  32. Normand, A. T. et al. Phosphido- and amidozirconocene cation-based frustrated Lewis pair chemistry. J. Am. Chem. Soc. 137, 10796–10808 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Hoyle, M.-A. M., Pantazis, D. A., Burton, H. M., McDonald, R. & Rosenberg, L. Benzonitrile adducts of terminal diarylphosphido complexes: preparative sources of ‘Ru═PR2’. Organometallics 30, 6458–6465 (2011).

    Article  CAS  Google Scholar 

  34. Pang, Y., Leutzsch, M., Nöthling, N. & Cornella, J. Dihydrogen and ethylene activation by a sterically distorted distibene. Angew. Chem. Int. Ed. 2023, e202302071 (2023).

    Google Scholar 

  35. Anderson, K. P. et al. Improved synthesis of icosahedral carboranes containing exopolyhedral B–C and C–C bonds. Tetrahedron 75, 187–191 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Spokoyny, A. M. New ligand platforms featuring boron-rich clusters as organomimetic substituents. Pure Appl. Chem. 85, 903–919 (2013).

    Article  CAS  Google Scholar 

  37. Fisher, S. P. et al. Nonclassical applications of closo-carborane anions: from main group chemistry and catalysis to energy storage. Chem. Rev. 119, 8262–8290 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Xie, Z. Cyclopentadienyl–carboranyl hybrid compounds: a new class of versatile ligands for organometallic chemistry. Acc. Chem. Res. 36, 1–9 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Perdew, J. P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 34, 8822–8824 (1986).

    Article  Google Scholar 

  40. Becke, A. D. Density-functional exchange–energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1998).

    Article  Google Scholar 

  41. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104–154119 (2010).

    Article  PubMed  Google Scholar 

  43. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Bader, R. F. W. Atoms in Molecules: A Quantum Theory (Clarendon Press, 1994)

  45. Barone, V. & Cossi, M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys. Chem. A 102, 1995–2001 (1998).

    Article  CAS  Google Scholar 

  46. Cossi, M., Rega, N., Scalmani, G. & Barone, V. Energies, structures, and electronic properties of molecules in solution with the C–PCM solvation model. J. Comput. Chem. 24, 669–681 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Jacobsen, R. T., Leachman, J. W., Penoncello, S. G. & Lemmon, E. W. Current status of thermodynamic properties of hydrogen. Int. J. Thermophys. 28, 758–772 (2007).

    Article  CAS  Google Scholar 

  48. Adamczyk, A. J., Reyniers, M.-F., Marin, G. B. & Broadbelt, L. J. Kinetic correlations for H2 addition and elimination reaction mechanisms during silicon hydride pyrolysis. Phys. Chem. Chem. Phys. 12, 12676–12696 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Pérez, M., Hounjet, L. J., Caputo, C. B., Dobrovetsky, R. & Stephan, D. W. Olefin isomerization and hydrosilylation catalysis by Lewis acidic organofluorophosphonium salts. J. Am. Chem. Soc. 135, 18308–18310 (2013).

    Article  PubMed  Google Scholar 

  50. Jutzi, P., Müller, C., Stammler, A. & Stammler, H.-G. Synthesis, crystal structure, and application of the oxonium acid [H(OEt2)2]+[B(C6F5)4]. Organometallics 19, 1442–1444 (2000).

    Article  CAS  Google Scholar 

  51. Connelly, S. J., Kaminsky, W. & Heinekey, D. M. Structure and solution reactivity of (triethylsilylium)triethylsilane cations. Organometallics 32, 7478–7481 (2013).

    Article  CAS  Google Scholar 

  52. Bruker APEX ΙΙΙ. Bruker AXS Inc. https://bruker.com/ (2019).

  53. Bruker SAINT v8.34A. Bruker AXS Inc. https://bruker.com/ (2013).

  54. Bruker Sadabs, 2014/5. Bruker AXS Inc. https://bruker.com/ (2015).

  55. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009).

    Article  CAS  Google Scholar 

  56. Sheldrick, G. M. SHELXT - Integrated space-group and crystal-structure determination. Acta Cryst. A71, 3–8 (2015).

    Google Scholar 

  57. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. C71, 3–8 (2015).

    Google Scholar 

  58. Frisch, M. J. et al. Gaussian 09, revision D.01. Gaussian, Inc. https://gaussian.com/ (2010).

  59. Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article  PubMed  Google Scholar 

  60. Hanwell, M. D. et al. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 4, 1–17 (2012).

    Article  Google Scholar 

  61. Legault, C. Y., CYLview20 Université de Sherbrooke http://www.cylview.org (2020).

Download references

Acknowledgements

This work was supported by the Israeli Science Foundation, grant 195/22, the Israel Ministry of Science Technology & Space, grant 01032376, and the US–Israel Binational Science Foundation, grant 2018221. D.T. thanks the Ariane de Rothschild Women Doctoral scholarship for outstanding female PhD students.

Author information

Authors and Affiliations

Authors

Contributions

D.B., D.T. and K.J. performed all the synthetic work. D.B. analysed and solved all X-ray molecular structures and did all the computational studies. R.D. supervised the project and wrote the paper with input from all authors.

Corresponding author

Correspondence to Roman Dobrovetsky.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Josh Abbenseth, Shigeyoshi Inoue and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussion and Figs. 1–76.

Supplementary Data 1

The Cartesian coordinates and energies of all optimized molecules are provided as *.xyz files.

Supplementary Data 2

Crystallographic data for compound 1-Cl; CCDC reference 2267545.

Supplementary Data 3

Structure parameters file for compound 1-Cl. CCDC reference 2267545.

Supplementary Data 4

Crystallographic data for compound 1-OTf; CCDC reference 2267548.

Supplementary Data 5

Structure parameters file for compound 1-OTf. CCDC reference 2267548.

Supplementary Data 6

Crystallographic data for compound [1+][B(C6F5)4]; CCDC reference 2267547.

Supplementary Data 7

Structure parameters file for compound [1+][B(C6F5)4]. CCDC reference 2267547.

Supplementary Data 8

Crystallographic data for compound [1+-H2][B(C6F5)4]; CCDC reference 2267546.

Supplementary Data 9

Structure parameters file for compound [1+-H2][B(C6F5)4]. CCDC reference 2267546.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bawari, D., Toami, D., Jaiswal, K. et al. Hydrogen splitting at a single phosphorus centre and its use for hydrogenation. Nat. Chem. (2024). https://doi.org/10.1038/s41557-024-01569-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41557-024-01569-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing