Skip to main content

Advertisement

Log in

Hyperkalemia in Chronic Kidney Disease in the New Era of Kidney Protection Therapies

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

A Correction to this article was published on 11 October 2021

This article has been updated

Abstract

Despite recent therapeutic advances, chronic kidney disease (CKD) is one of the fastest growing global causes of death. This illustrates limitations of current therapeutic approaches and, potentially, unidentified knowledge gaps. For decades, renin-angiotensin-aldosterone system (RAAS) blockers have been the mainstay of therapy for CKD. However, they favor the development of hyperkalemia, which is already common in CKD patients due to the CKD-associated decrease in urinary potassium (K+) excretion and metabolic acidosis. Hyperkalemia may itself be life-threatening as it may trigger potentially lethal arrhythmia, and additionally may limit the prescription of RAAS blockers and lead to low-K+ diets associated to low dietary fiber intake. Indeed, hyperkalemia is associated with adverse kidney, cardiovascular, and survival outcomes. Recently, novel kidney protective therapies, ranging from sodium/glucose cotransporter 2 (SGLT2) inhibitors to new mineralocorticoid receptor antagonists have shown efficacy in clinical trials. Herein, we review K+ pathophysiology and the clinical impact and management of hyperkalemia considering these developments and the availability of the novel K+ binders patiromer and sodium zirconium cyclosilicate, recent results from clinical trials targeting metabolic acidosis (sodium bicarbonate, veverimer), and an increasing understanding of the role of the gut microbiota in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

References

  1. Viera AJ, Wouk N. Potassium disorders: hypokalemia and hyperkalemia. Am Fam Physician. 2015;92(6):487–95.

    PubMed  Google Scholar 

  2. Cohn JN, Kowey PR, Whelton PK, et al. New guidelines for potassium replacement in clinical practice: a contemporary review by the National Council on Potassium in Clinical Practice. Arch Intern Med. 2000;160(16):2429–36.

    Article  CAS  PubMed  Google Scholar 

  3. Ferreira JP, Butler J, Rossignol P, et al. Abnormalities of potassium in heart failure: JACC state-of-the-art review. J Am Coll Cardiol. 2020;75(22):2836–50.

    Article  CAS  PubMed  Google Scholar 

  4. Nilsson E, Gasparini A, Ärnlöv J, et al. Incidence and determinants of hyperkalemia and hypokalemia in a large healthcare system. Int J Cardiol. 2017;245:277–84.

    Article  PubMed  Google Scholar 

  5. Institute of M. Dietary reference intakes for water, potassium, sodium, chloride, and sulfate. Washington, DC: The National Academies Press; 2005.

  6. Giebisch G. Renal potassium transport: mechanisms and regulation. Am J Physiol. 1998;274(5):F817–33.

    CAS  PubMed  Google Scholar 

  7. Hayslett JP, Binder HJ. Mechanism of potassium adaptation. Am J Physiol. 1982;243(2):F103–12.

    CAS  PubMed  Google Scholar 

  8. Bastl C, Hayslett JP, Binder HJ. Increased large intestinal secretion of potassium in renal insufficiency. Kidney Int. 1977;12(1):9–16.

    Article  CAS  PubMed  Google Scholar 

  9. Palmer BF, Clegg DJ. Physiology and pathophysiology of potassium homeostasis. Adv Physiol Educ. 2016;40(4):480–90.

    Article  PubMed  Google Scholar 

  10. Pirkmajer S, Chibalin AV. Na, K-ATPase regulation in skeletal muscle. Am J Physiol Endocrinol Metab. 2016;311(1):E1–31.

    Article  PubMed  Google Scholar 

  11. Giebisch G, Krapf R, Wagner C. Renal and extrarenal regulation of potassium. Kidney Int. 2007;72(4):397–410.

    Article  CAS  PubMed  Google Scholar 

  12. Rao R, Bhalla V, Pastor-Soler NM. Intercalated cells of the kidney collecting duct in kidney physiology. Semin Nephrol. 2019;39(4):353–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Preston RA, Afshartous D, Rodco R, et al. Evidence for a gastrointestinal-renal kaliuretic signaling axis in humans. Kidney Int. 2015;88(6):1383–91.

    Article  CAS  PubMed  Google Scholar 

  14. Truhlar A, Deakin CD, Soar J, et al. European resuscitation council guidelines for resuscitation 2015: section 4. Cardiac arrest in special circumstances. Resuscitation. 2015;95:148–201.

    Article  PubMed  Google Scholar 

  15. Paice B, Gray JM, McBride D, et al. Hyperkalaemia in patients in hospital. Br Med J (Clin Res Ed). 1983;286(6372):1189–92.

    Article  CAS  Google Scholar 

  16. Moore ML, Bailey RR. Hyperkalaemia in patients in hospital. N Z Med J. 1989;102(878):557–8.

    CAS  PubMed  Google Scholar 

  17. Acker CG, Johnson JP, Palevsky PM, et al. Hyperkalemia in hospitalized patients: causes, adequacy of treatment, and results of an attempt to improve physician compliance with published therapy guidelines. Arch Intern Med. 1998;158(8):917–24.

    Article  CAS  PubMed  Google Scholar 

  18. Einhorn LM, Zhan M, Hsu VD, et al. The frequency of hyperkalemia and its significance in chronic kidney disease. Arch Intern Med. 2009;169(12):1156–62.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Conway R, Creagh D, Byrne DG, et al. Serum potassium levels as an outcome determinant in acute medical admissions. Clin Med (Lond). 2015;15(3):239–43.

    Article  Google Scholar 

  20. Health and Social Care Information Centre. Hospital Episodes for England. In patients statistics, 2013-14. wwwhscicgovuk. 2014.

  21. Palaka E, Grandy S, Darlington O, et al. Associations between serum potassium and adverse clinical outcomes: a systematic literature review. Int J Clin Pract. 2020;74(1):e13421.

    Article  PubMed  Google Scholar 

  22. Furuland H, McEwan P, Evans M, et al. Serum potassium as a predictor of adverse clinical outcomes in patients with chronic kidney disease: new risk equations using the UK clinical practice research datalink. BMC Nephrol. 2018;19(1):211.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Vega LB, Galabia ER, da Silva JB, et al. Epidemiology of hyperkalemia in chronic kidney disease. Nefrologia. 2019;39(3):277–86.

    Google Scholar 

  24. Chang AR, Sang Y, Leddy J, et al. Antihypertensive medications and the prevalence of hyperkalemia in a large health system. Hypertension. 2016;67(6):1181–8.

    Article  CAS  PubMed  Google Scholar 

  25. Davies SJ, Zhao J, Morgenstern H, et al. Low serum potassium levels and clinical outcomes in peritoneal dialysis-international results from PDOPPS. Kidney Int Rep. 2021;6(2):313–24.

    Article  PubMed  Google Scholar 

  26. Kuczera P, Ciaston-Mogilska D, Oslizlo B, et al. The prevalence of metabolic acidosis in patients with different stages of chronic kidney disease: single-centre study. Kidney Blood Press Res. 2020;45(6):863–72.

    Article  CAS  PubMed  Google Scholar 

  27. G. B. D. Causes of Death Collaborators. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390(10100):1151–1210.

  28. Foreman KJ, Marquez N, Dolgert A, et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016–40 for 195 countries and territories. Lancet. 2018;392(10159):2052–90.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jager KJ, Kovesdy C, Langham R, et al. A single number for advocacy and communication-worldwide more than 850 million individuals have kidney diseases. Nephrol Dial Transplant. 2019;34(11):1803–5.

    Article  PubMed  Google Scholar 

  30. Pickup LC, Law JP, Townend JN, et al. Sudden cardiac death in chronic renal disease: aetiology and risk reduction strategies. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association. 2019 (0nline ahead of print).

  31. Rossignol P, Ruilope LM, Cupisti A, et al. Recurrent hyperkalaemia management and use of renin-angiotensin-aldosterone system inhibitors: a European multi-national targeted chart review. Clin Kidney J. 2020;13(4):714–9.

    Article  PubMed  Google Scholar 

  32. Korgaonkar S, Tilea A, Gillespie BW, et al. Serum potassium and outcomes in CKD: insights from the RRI-CKD cohort study. Clin J Am Soc Nephrol CJASN. 2010;5(5):762–9.

    Article  CAS  PubMed  Google Scholar 

  33. Sarafidis PA, Blacklock R, Wood E, et al. Prevalence and factors associated with hyperkalemia in predialysis patients followed in a low-clearance clinic. Clin J Am Soc Nephrol CJASN. 2012;7(8):1234–41.

    Article  CAS  PubMed  Google Scholar 

  34. Turgutalp K, Bardak S, Helvaci I, et al. Community-acquired hyperkalemia in elderly patients: risk factors and clinical outcomes. Ren Fail. 2016;38(9):1405–12.

    Article  PubMed  Google Scholar 

  35. Horne L, Ashfaq A, MacLachlan S, et al. Epidemiology and health outcomes associated with hyperkalemia in a primary care setting in England. BMC Nephrol. 2019;20(1):85.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Loutradis C, Tolika P, Skodra A, et al. Prevalence of hyperkalemia in diabetic and non-diabetic patients with chronic kidney disease: a nested case-control study. Am J Nephrol. 2015;42(5):351–60.

    Article  CAS  PubMed  Google Scholar 

  37. Borrelli S, De Nicola L, Minutolo R, et al. Current Management of Hyperkalemia in Non-Dialysis CKD: Longitudinal Study of Patients Receiving Stable Nephrology Care. Nutrients. 2021;13(3):942.

  38. Provenzano M, Minutolo R, Chiodini P, et al. Competing-Risk Analysis of Death and End Stage Kidney Disease by Hyperkalaemia Status in Non-Dialysis Chronic Kidney Disease Patients Receiving Stable Nephrology Care. J Clin Med. 2018;7(12):499.

  39. Thomsen RW, Nicolaisen SK, Adelborg K, et al. Hyperkalaemia in people with diabetes: occurrence, risk factors and outcomes in a Danish population-based cohort study. Diabet Med. 2018;35(8):1051–60.

    Article  CAS  PubMed  Google Scholar 

  40. Tromp J, van der Meer P. Hyperkalaemia: aetiology, epidemiology, and clinical significance. Eur Heart J Suppl. 2019;21(Suppl A):A6–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Beusekamp JC, Tromp J, van der Wal HH, et al. Potassium and the use of renin-angiotensin-aldosterone system inhibitors in heart failure with reduced ejection fraction: data from BIOSTAT-CHF. Eur J Heart Fail. 2018;20(5):923–30.

    Article  CAS  PubMed  Google Scholar 

  42. UKRR. UK Renal Registry 22nd Annual Report—data to 31/12/2018. Bristol. 2018.

  43. Rossignol P, Lamiral Z, Frimat L, et al. Hyperkalaemia prevalence, recurrence and management in chronic haemodialysis: a prospective multicentre French regional registry 2-year survey. Nephrol Dial Transplant. 2017;32(12):2112–8.

    Article  CAS  PubMed  Google Scholar 

  44. Kovesdy CP, Regidor DL, Mehrotra R, et al. Serum and dialysate potassium concentrations and survival in hemodialysis patients. Clin J Am Soc Nephrol. 2007;2(5):999–1007.

    Article  CAS  PubMed  Google Scholar 

  45. Karaboyas A, Zee J, Brunelli SM, et al. Dialysate potassium, serum potassium, mortality, and arrhythmia events in hemodialysis: results from the dialysis outcomes and practice patterns study (DOPPS). Am J Kidney Dis. 2017;69(2):266–77.

    Article  CAS  PubMed  Google Scholar 

  46. Schmidt ST, Ditting T, Deutsch B, et al. Circadian rhythm and day to day variability of serum potassium concentration: a pilot study. J Nephrol. 2015;28(2):165–72.

    Article  CAS  PubMed  Google Scholar 

  47. Torlen K, Kalantar-Zadeh K, Molnar MZ, et al. Serum potassium and cause-specific mortality in a large peritoneal dialysis cohort. Clin J Am Soc Nephrol. 2012;7(8):1272–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cheung AK, Yan G, Greene T, et al. Seasonal variations in clinical and laboratory variables among chronic hemodialysis patients. J Am Soc Nephrol. 2002;13(9):2345–52.

    Article  PubMed  Google Scholar 

  49. Usvyat LA, Carter M, Thijssen S, et al. Seasonal variations in mortality, clinical, and laboratory parameters in hemodialysis patients: a 5-year cohort study. Clin J Am Soc Nephrol. 2012;7(1):108–15.

    Article  CAS  PubMed  Google Scholar 

  50. Noori N, Kalantar-Zadeh K, Kovesdy CP, et al. Dietary potassium intake and mortality in long-term hemodialysis patients. Am J Kidney Dis. 2010;56(2):338–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pun PH, Lehrich RW, Honeycutt EF, et al. Modifiable risk factors associated with sudden cardiac arrest within hemodialysis clinics. Kidney Int. 2011;79(2):218–27.

    Article  CAS  PubMed  Google Scholar 

  52. Jadoul M, Karaboyas A, Goodkin DA, et al. Potassium-binding resins: associations with serum chemistries and interdialytic weight gain in hemodialysis patients. Am J Nephrol. 2014;39(3):252–9.

    Article  CAS  PubMed  Google Scholar 

  53. Quach K, Lvtvyn L, Baigent C, et al. The safety and efficacy of mineralocorticoid receptor antagonists in patients who require dialysis: a systematic review and meta-analysis. Am J Kidney Dis. 2016;68(4):591–8.

    Article  CAS  PubMed  Google Scholar 

  54. Knoll GA, Sahgal A, Nair RC, et al. Renin-angiotensin system blockade and the risk of hyperkalemia in chronic hemodialysis patients. Am J Med. 2002;112(2):110–4.

    Article  CAS  PubMed  Google Scholar 

  55. Suzuki H, Kanno Y, Sugahara S, et al. Effect of angiotensin receptor blockers on cardiovascular events in patients undergoing hemodialysis: an open-label randomized controlled trial. Am J Kidney Dis. 2008;52(3):501–6.

    Article  CAS  PubMed  Google Scholar 

  56. Zannad F, Kessler M, Lehert P, et al. Prevention of cardiovascular events in end-stage renal disease: results of a randomized trial of fosinopril and implications for future studies. Kidney Int. 2006;70(7):1318–24.

    Article  CAS  PubMed  Google Scholar 

  57. Agarwal R, Sinha AD, Pappas MK, et al. Hypertension in hemodialysis patients treated with atenolol or lisinopril: a randomized controlled trial. Nephrol Dial Transplant. 2014;29(3):672–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Furgeson SB, Chonchol M. Beta-blockade in chronic dialysis patients. Semin Dial. 2008;21(1):43–8.

    Article  PubMed  Google Scholar 

  59. Iseki K, Uehara H, Nishime K, et al. Impact of the initial levels of laboratory variables on survival in chronic dialysis patients [research support, non-U.S. Gov’t]. Am J Kidney Dis. 1996;28(4):541–8.

    Article  CAS  PubMed  Google Scholar 

  60. Yusuf AA, Hu Y, Singh B, et al. Serum potassium levels and mortality in hemodialysis patients: a retrospective cohort study [research support, non-U.S. Gov’t]. Am J Nephrol. 2016;44(3):179–86.

    Article  CAS  PubMed  Google Scholar 

  61. Eriguchi R, Obi Y, Soohoo M, et al. Racial and ethnic differences in mortality associated with serum potassium in incident peritoneal dialysis patients. Am J Nephrol. 2019;50(5):361–9.

    Article  CAS  PubMed  Google Scholar 

  62. Genovesi S, Valsecchi MG, Rossi E, et al. Sudden death and associated factors in a historical cohort of chronic haemodialysis patients. Nephrol Dial Transplant. 2009;24(8):2529–36.

    Article  PubMed  Google Scholar 

  63. Brunelli SM, Du Mond C, Oestreicher N, et al. Serum potassium and short-term clinical outcomes among hemodialysis patients: impact of the long interdialytic interval [observational study]. Am J Kidney Dis. 2017;70(1):21–9.

    Article  CAS  PubMed  Google Scholar 

  64. Nakhoul GN, Huang H, Arrigain S, et al. Serum potassium, end-stage renal disease and mortality in chronic kidney disease [research support, N.I.H., extramural]. Am J Nephrol. 2015;41(6):456–63.

    Article  CAS  PubMed  Google Scholar 

  65. Luo J, Brunelli SM, Jensen DE, et al. Association between serum potassium and outcomes in patients with reduced kidney function. Clin J Am Soc Nephrol. 2016;11(1):90–100.

    Article  CAS  PubMed  Google Scholar 

  66. Thomsen RW, Nicolaisen SK, Hasvold P, et al. Elevated potassium levels in patients with chronic kidney disease: occurrence, risk factors and clinical outcomes-a Danish population-based cohort study [Research Support, Non-U.S. Gov’t]. Nephrol Dial Transplant. 2018;33(9):1610–20.

    Article  CAS  PubMed  Google Scholar 

  67. Valdivielso JM, Betriu A, Martinez-Alonso M, et al. Factors predicting cardiovascular events in chronic kidney disease patients. Role of subclinical atheromatosis extent assessed by vascular ultrasound. Plos One. 2017;12(10):e0186665.

  68. Wagner S, Metzger M, Flamant M, et al. Association of plasma potassium with mortality and end-stage kidney disease in patients with chronic kidney disease under nephrologist care—the NephroTest study. BMC Nephrol. 2017;18(1):295.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. An JN, Lee JP, Jeon HJ, et al. Severe hyperkalemia requiring hospitalization: predictors of mortality [observational study]. Crit Care. 2012;16(6):R225.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Gasparini A, Evans M, Barany P, et al. Plasma potassium ranges associated with mortality across stages of chronic kidney disease: the Stockholm CREAtinine Measurements (SCREAM) project [Observational Study Research Support, Non-U.S. Gov’t]. Nephrol Dial Transplant. 2019;34(9):1534–41.

    Article  CAS  PubMed  Google Scholar 

  71. Surawicz B, Chlebus H, Mazzoleni A. Hemodynamic and electrocardiographic effects of hyperpotassemia. Differences in response to slow and rapid increases in concentration of plasma K. Am Heart J. 1967;73(5):647–64.

    Article  CAS  PubMed  Google Scholar 

  72. Montford JR, Linas S. How dangerous is hyperkalemia? [review]. J Am Soc Nephrol. 2017;28(11):3155–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kovesdy CP, Matsushita K, Sang Y, et al. Serum potassium and adverse outcomes across the range of kidney function: a CKD Prognosis Consortium meta-analysis. Eur Heart J. 2018;39(17):1535–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Núñez J, Bayés-Genís A, Zannad F, et al. Long-term potassium monitoring and dynamics in heart failure and risk of mortality. Circulation. 2018;137(13):1320–30.

    Article  CAS  PubMed  Google Scholar 

  75. Krogager ML, Søgaard P, Torp-Pedersen C, et al. Impact of plasma potassium normalization on short-term mortality in patients with hypertension and hyperkalemia. J Am Heart Assoc. 2020;9(24):e017087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gonick HC, Kleeman CR, Rubini ME, et al. Functional impairment in chronic renal disease. 3. Studies of potassium excretion. Am J Med Sci. 1971;261(5):281–90.

    Article  CAS  PubMed  Google Scholar 

  77. Adrogué HJ, Lederer ED, Suki WN, et al. Determinants of plasma potassium levels in diabetic ketoacidosis. Medicine (Baltimore). 1986;65(3):163–72.

    Article  Google Scholar 

  78. Allon M. Hyperkalemia in end-stage renal disease: mechanisms and management. J Am Soc Nephrol. 1995;6(4):1134–42.

    Article  CAS  PubMed  Google Scholar 

  79. Boddy K, King PC, Hume R, et al. The relation of total body potassium to height, weight, and age in normal adults. J Clin Pathol. 1972;25(6):512–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Caravaca-Fontán F, Valladares J, Díaz-Campillejo R, et al. Renal potassium handling in chronic kidney disease: differences between patients with or wihtout hyperkalemia. Nefrologia. 2020;40(2):152–9.

    Article  PubMed  Google Scholar 

  81. Bonilla S, Goecke IA, Bozzo S, et al. Effect of chronic renal failure on Na, K-ATPase alpha 1 and alpha 2 mRNA transcription in rat skeletal muscle. J Clin Invest. 1991;88(6):2137–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Palmer BF, Clegg DJ. Physiology and pathophysiology of potassium homeostasis: core curriculum 2019. Am J Kidney Dis. 2019;74(5):682–95.

    Article  CAS  PubMed  Google Scholar 

  83. Dépret F, Peacock WF, Liu KD, et al. Management of hyperkalemia in the acutely ill patient. Ann Intensive Care. 2019;9(1):32.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Palmer BF, Clegg DJ. Electrolyte and acid-base disturbances in patients with diabetes mellitus. N Engl J Med. 2015;373(6):548–59.

    Article  CAS  PubMed  Google Scholar 

  85. Kovesdy CP. Updates in hyperkalemia: outcomes and therapeutic strategies. Rev Endocr Metab Disord. 2017;18(1):41–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Arrizabalaga P, Montoliu J, Martinez Vea A, et al. Increase in serum potassium caused by beta-2 adrenergic blockade in terminal renal failure: absence of mediation by insulin or aldosterone. Proc Eur Dial Transplant Assoc. 1983;20:572–6.

    CAS  PubMed  Google Scholar 

  87. Lindinger MI. Potassium regulation during exercise and recovery in humans: implications for skeletal and cardiac muscle. J Mol Cell Cardiol. 1995;27(4):1011–22.

    Article  CAS  PubMed  Google Scholar 

  88. Kovesdy CP, Appel LJ, Grams ME, et al. Potassium homeostasis in health and disease: a scientific workshop cosponsored by the National Kidney Foundation and the American Society of Hypertension. Am J Kidney Dis. 2017;70(6):844–58.

    Article  CAS  PubMed  Google Scholar 

  89. Yusuf S, Teo KK, Pogue J, et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med. 2008;358(15):1547–59.

    Article  CAS  PubMed  Google Scholar 

  90. Van Buren PN, Adams-Huet B, Nguyen M, et al. Potassium handling with dual renin-angiotensin system inhibition in diabetic nephropathy. Clin J Am Soc Nephrol. 2014;9(2):295–301.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Maschio G, Alberti D, Janin G, et al. Effect of the angiotensin-converting-enzyme inhibitor benazepril on the progression of chronic renal insufficiency. The Angiotensin-Converting-Enzyme Inhibition in Progressive Renal Insufficiency Study Group. N Engl J Med. 1996;334(15):939–45.

    Article  CAS  PubMed  Google Scholar 

  92. Randomised placebo-controlled trial of effect of ramipril on decline in glomerular filtration rate and risk of terminal renal failure in proteinuric, non-diabetic nephropathy. The GISEN Group (Gruppo Italiano di Studi Epidemiologici in Nefrologia). Lancet. 1997;349(9069):1857–63.

  93. Ruggenenti P, Perna A, Gherardi G, et al. Renoprotective properties of ACE-inhibition in non-diabetic nephropathies with non-nephrotic proteinuria. Lancet. 1999;354(9176):359–64.

    Article  CAS  PubMed  Google Scholar 

  94. Brenner BM, Cooper ME, de Zeeuw D, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345(12):861–9.

    Article  CAS  PubMed  Google Scholar 

  95. Lewis EJ, Hunsicker LG, Clarke WR, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med. 2001;345(12):851–60.

    Article  CAS  PubMed  Google Scholar 

  96. Miao Y, Dobre D, Heerspink HJ, et al. Increased serum potassium affects renal outcomes: a post hoc analysis of the Reduction of Endpoints in NIDDM with the Angiotensin II Antagonist Losartan (RENAAL) trial. Diabetologia. 2011;54(1):44–50.

    Article  CAS  PubMed  Google Scholar 

  97. Parving HH, Brenner BM, McMurray JJ, et al. Cardiorenal end points in a trial of aliskiren for type 2 diabetes. N Engl J Med. 2012;367(23):2204–13.

    Article  CAS  PubMed  Google Scholar 

  98. Fried LF, Emanuele N, Zhang JH, et al. Combined angiotensin inhibition for the treatment of diabetic nephropathy. N Engl J Med. 2013;369(20):1892–903.

    Article  CAS  PubMed  Google Scholar 

  99. Feng Y, Huang R, Kavanagh J, et al. Efficacy and safety of dual blockade of the renin-angiotensin-aldosterone system in diabetic kidney disease: a meta-analysis. Am J Cardiovasc Drugs. 2019;19(3):259–86.

    Article  CAS  PubMed  Google Scholar 

  100. Agency EM. Combined use of medicines affecting the renin-angiotensin system (RAS) to be restricted—CHMP endorses PRAC recommendation 2014 [updated 23/05/2014; cited 2020 December 21]. Available from: https://www.ema.europa.eu/en/news/combined-use-medicines-affecting-renin-angiotensin-system-ras-be-restricted-chmp-endorses-prac.

  101. Bandak G, Sang Y, Gasparini A, et al. Hyperkalemia After Initiating Renin-Angiotensin System Blockade: The Stockholm Creatinine Measurements (SCREAM) Project. J Am Heart Assoc. 2017;6(7):e005428

  102. Panuccio V, Leonardis D, Tripepi R, et al. Epidemiology of hyperkalemia in CKD patients under nephrological care: a longitudinal study. Intern Emerg Med. 2021 Feb (Online ahead of print).

  103. Shirazian S, Grant CD, Mujeeb S, et al. Underprescription of renin-angiotensin system blockers in moderate to severe chronic kidney disease. Am J Med Sci. 2015;349(6):510–5.

    Article  PubMed  Google Scholar 

  104. Gosmanova EO, Molnar MZ, Naseer A, et al. Longer predialysis ACEi/ARB utilization is associated with reduced postdialysis mortality. Am J Med. 2020;133(9):1065-1073.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sarafidis PA, Memmos E, Alexandrou M-E, et al. Mineralocorticoid receptor antagonists for nephroprotection: current evidence and future perspectives. Curr Pharm Des. 2018;24(46):5528–36.

    Article  CAS  PubMed  Google Scholar 

  106. Stavropoulos K, Imprialos K, Papademetriou V, et al. Primary Aldosteronism: Novel Insights. Curr Hypertens Rev. 2020;16(1):19–23.

    CAS  PubMed  Google Scholar 

  107. Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J Hypertens. 2018;36(10):1953–2041.

    Article  CAS  PubMed  Google Scholar 

  108. Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2016;18(8):891–975.

  109. Alexandrou M-E, Papagianni A, Tsapas A, et al. Effects of mineralocorticoid receptor antagonists in proteinuric kidney disease: a systematic review and meta-analysis of randomized controlled trials. J Hypertens. 2019;37(12):2307–24.

    Article  CAS  PubMed  Google Scholar 

  110. Sarafidis PA, Georgianos PI, Lasaridis AN. Diuretics in clinical practice. Part II: electrolyte and acid-base disorders complicating diuretic therapy. Expert Opin Drug Saf. 2010;9(2):259–73.

    Article  CAS  PubMed  Google Scholar 

  111. Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med. 1999;341(10):709–17.

    Article  CAS  PubMed  Google Scholar 

  112. The Rales Investigators. Effectiveness of spironolactone added to an angiotensin-converting enzyme inhibitor and a loop diuretic for severe chronic congestive heart failure (the Randomized Aldactone Evaluation Study [RALES]). Am J Cardiol. 1996;78(8):902–7.

  113. Juurlink DN, Mamdani MM, Lee DS, et al. Rates of hyperkalemia after publication of the Randomized Aldactone Evaluation Study. N Engl J Med. 2004;351(6):543–51.

    Article  CAS  PubMed  Google Scholar 

  114. Bomback AS, Kshirsagar AV, Amamoo MA, et al. Change in proteinuria after adding aldosterone blockers to ACE inhibitors or angiotensin receptor blockers in CKD: a systematic review. Am J Kidney Dis. 2008;51(2):199–211.

    Article  PubMed  Google Scholar 

  115. Khosla N, Kalaitzidis R, Bakris GL. Predictors of hyperkalemia risk following hypertension control with aldosterone blockade. Am J Nephrol. 2009;30(5):418–24.

    Article  CAS  PubMed  Google Scholar 

  116. Barfacker L, Kuhl A, Hillisch A, et al. Discovery of BAY 94–8862: a nonsteroidal antagonist of the mineralocorticoid receptor for the treatment of cardiorenal diseases. ChemMedChem. 2012;7(8):1385–403.

    Article  CAS  PubMed  Google Scholar 

  117. Kolkhof P, Jaisser F, Kim SY, et al. Steroidal and novel non-steroidal mineralocorticoid receptor antagonists in heart failure and cardiorenal diseases: comparison at bench and bedside. Handb Exp Pharmacol. 2017;243:271–305.

    Article  CAS  PubMed  Google Scholar 

  118. Pitt B, Kober L, Ponikowski P, Gheorghiade M, Filippatos G, Krum H, et al. Safety and tolerability of the novel non-steroidal mineralocorticoid receptor antagonist BAY 94-8862 in patients with chronic heart failure and mild or moderate chronic kidney disease: a randomized, double-blind trial. European heart journal. 2013;34(31):2453–63.

  119. Bakris GL, Agarwal R, Chan JC, et al. Effect of finerenone on albuminuria in patients with diabetic nephropathy: a randomized clinical trial. JAMA. 2015;314(9):884–94.

    Article  CAS  PubMed  Google Scholar 

  120. Katayama S, Yamada D, Nakayama M, et al. A randomized controlled study of finerenone versus placebo in Japanese patients with type 2 diabetes mellitus and diabetic nephropathy. J Diabetes Complicat. 2017;31(4):758–65.

    Article  Google Scholar 

  121. Bakris GL, Agarwal R, Anker SD, et al. Design and baseline characteristics of the finerenone in reducing kidney failure and disease progression in diabetic kidney disease trial. Am J Nephrol. 2019;50(5):333–44.

    Article  CAS  PubMed  Google Scholar 

  122. Bakris GL, Agarwal R, Anker SD, et al. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N Engl J Med. 2020;383(23):2219–29.

    Article  CAS  PubMed  Google Scholar 

  123. Filippatos G, Anker SD, Agarwal R, et al. Finerenone and Cardiovascular Outcomes in Patients with Chronic Kidney Disease and Type 2 Diabetes. Circulation. 2021;143(6):540–552

  124. Agarwal R, Anker SD, Bakris G, et al. Investigating new treatment opportunities for patients with chronic kidney disease in type 2 diabetes: the role of finerenone. Nephrology, Dialysis, Transplantation: Official Publication of the European Dialysis and Transplant Association - European Renal Association. 2020. (Online ahead of print)

  125. Agarwal R, Kolkhof P, Bakris G, et al. Steroidal and non-steroidal mineralocorticoid receptor antagonists in cardiorenal medicine. European Heart Journal. 2021;42(2):152-161.

  126. Grune J, Beyhoff N, Smeir E, et al. Selective mineralocorticoid receptor cofactor modulation as molecular basis for finerenone’s antifibrotic activity. Hypertension. 2018;71(4):599–608.

    Article  CAS  PubMed  Google Scholar 

  127. Huang LL, Nikolic-Paterson DJ, Han Y, et al. Myeloid mineralocorticoid receptor activation contributes to progressive kidney disease. J Am Soc Nephrol. 2014;25(10):2231–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ruilope LM, Agarwal R, Anker SD, et al. Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial. Am J Nephrol. 2019;50(5):345–56.

    Article  CAS  PubMed  Google Scholar 

  129. Clegg DJ, Hill Gallant KM. Plant-based diets in CKD. Clin J Am Soc Nephrol. 2019;14(1):141–3.

    Article  CAS  PubMed  Google Scholar 

  130. Cases A, Cigarrán-Guldrís S, Mas S, et al. Vegetable-Based Diets for Chronic Kidney Disease? It Is Time to Reconsider. Nutrients. 2019;11(6):1263

  131. Goraya N, Simoni J, Jo CH, et al. A comparison of treating metabolic acidosis in CKD stage 4 hypertensive kidney disease with fruits and vegetables or sodium bicarbonate. Clin J Am Soc Nephrol. 2013;8(3):371–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. St-Jules DE, Goldfarb DS, Sevick MA. Nutrient non-equivalence: does restricting high-potassium plant foods help to prevent hyperkalemia in hemodialysis patients? J Ren Nutr. 2016;26(5):282–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Sherman RA, Mehta O. Phosphorus and potassium content of enhanced meat and poultry products: implications for patients who receive dialysis. Clin J Am Soc Nephrol. 2009;4(8):1370–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ramos CI, González-Ortiz A, Espinosa-Cuevas A, et al. Does dietary potassium intake associate with hyperkalemia in patients with chronic kidney disease? Nephrol Dial Transplant 2020. (Online ahead of print)

  135. Reardon LC, Macpherson DS. Hyperkalemia in outpatients using angiotensin-converting enzyme inhibitors. How much should we worry? Arch Intern Med. 1998;158(1):26–32.

    Article  CAS  PubMed  Google Scholar 

  136. Morales E, Caro J, Gutierrez E, et al. Diverse diuretics regimens differentially enhance the antialbuminuric effect of renin-angiotensin blockers in patients with chronic kidney disease. Kidney Int. 2015;88(6):1434–41.

    Article  CAS  PubMed  Google Scholar 

  137. Fernandez-Fernandez B, Sarafidis P, Kanbay M, et al. SGLT2 inhibitors for non-diabetic kidney disease: drugs to treat CKD that also improve glycaemia. Clin Kidney J. 2020;13(5):728–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Fernandez-Fernandez B, Fernandez-Prado R, Górriz JL, et al. Canagliflozin and renal events in diabetes with established nephropathy clinical evaluation and study of diabetic nephropathy with atrasentan: what was learned about the treatment of diabetic kidney disease with canagliflozin and atrasentan? Clin Kidney J. 2019;12(3):313–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Group KDIGOKDW. KDIGO 2020 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int. 2020;98(4S):S1–S115.

  140. Seferović PM, Fragasso G, Petrie M, et al. Heart Failure Association of the European Society of Cardiology update on sodium-glucose co-transporter 2 inhibitors in heart failure. Eur J Heart Fail. 2020;22(11):1984–6.

    Article  PubMed  Google Scholar 

  141. Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380(24):2295–306.

    Article  CAS  PubMed  Google Scholar 

  142. Heerspink HJL, Stefánsson BV, Correa-Rotter R, et al. Dapagliflozin in Patients with Chronic Kidney Disease. N Engl J Med. 2020;383(15):1436–1446.

  143. Weir MR, Slee A, Sun T, et al. Effects of canagliflozin on serum potassium in the CANagliflozin cardioVascular Assessment Study (CANVAS) Program. 2020.

  144. Group KDIGOKCW. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013;3:1–150.

    Google Scholar 

  145. Mannon EC, O’Connor PM. Alkali supplementation as a therapeutic in chronic kidney disease: what mediates protection? Am J Physiol Renal Physiol. 2020;319(6):F1090–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Melamed ML, Horwitz EJ, Dobre MA, et al. Effects of sodium bicarbonate in CKD stages 3 and 4: a randomized, placebo-controlled, multicenter clinical trial. Am J Kidney Dis. 2020;75(2):225–34.

    Article  CAS  PubMed  Google Scholar 

  147. Di Iorio BR, Bellasi A, Raphael KL, et al. Treatment of metabolic acidosis with sodium bicarbonate delays progression of chronic kidney disease: the UBI Study. J Nephrol. 2019;32(6):989–1001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Adrogu�� HJ, Madias NE. Veverimer: an emerging potential treatment option for managing the metabolic acidosis of CKD. Am J Kidney Dis. 2020;76(6):861–7.

    Article  CAS  PubMed  Google Scholar 

  149. Klaerner G, Shao J, Biyani K, et al. Mechanism of action of veverimer: a novel, orally administered, nonabsorbed, counterion-free, hydrochloric acid binder under development for the treatment of metabolic acidosis in chronic kidney disease. J Pharmacol Exp Ther. 2020;375(3):439–50.

    Article  CAS  PubMed  Google Scholar 

  150. Wesson DE, Mathur V, Tangri N, et al. Long-term safety and efficacy of veverimer in patients with metabolic acidosis in chronic kidney disease: a multicentre, randomised, blinded, placebo-controlled, 40-week extension. Lancet. 2019;394(10196):396–406.

    Article  CAS  PubMed  Google Scholar 

  151. Wesson DE, Mathur V, Tangri N, et al. Veverimer versus placebo in patients with metabolic acidosis associated with chronic kidney disease: a multicentre, randomised, double-blind, controlled, phase 3 trial. Lancet. 2019;393(10179):1417–27.

    Article  CAS  PubMed  Google Scholar 

  152. Bushinsky DA, Hostetter T, Klaerner G, et al. Randomized, controlled trial of TRC101 to increase serum bicarbonate in patients with CKD. Clin J Am Soc Nephrol. 2018;13(1):26–35.

    Article  CAS  PubMed  Google Scholar 

  153. Agency EM. Summary of opinion (initial authorisation). Sibnayal potassium citrate / potassium hydrogen carbonate 2020 [cited 2021]. Available from: https://www.ema.europa.eu/en/documents/smop-initial/chmp-summary-positive-opinion-sibnayal_en.pdf.

  154. Agency EM. Summary of the European public assessment report (EPAR) for Veltassa (patiromer) 2017 [updated 01/08/2017; cited 2018 April 21]. Available from: https://www.ema.europa.eu/en/documents/product-information/veltassa-epar-product-information_en.pdf.

  155. Agency EM. Summary of the European public assessment report (EPAR) for Lokelma (sodium zirconium cyclosilicate). 2018 [updated 05/04/2018; cited 2018 April 21]. Available from: https://www.ema.europa.eu/en/documents/product-information/lokelma-epar-product-information_en.pdf.

  156. Rossignol P. A new area for the management of hyperkalaemia with potassium binders: clinical use in nephrology. Eur Heart J Suppl. 2019;21(Suppl A):A48–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Productos AEdMy, Sanitarios. Ficha técnica Resincalcio 2008 [cited 2021]. Available from: https://cima.aemps.es/cima/pdfs/es/ft/46726/FT_46726.pdf.

  158. Pitt B, Bakris GL. New potassium binders for the treatment of hyperkalemia: current data and opportunities for the future. Hypertension. 2015;66(4):731–8.

    Article  CAS  PubMed  Google Scholar 

  159. Noel JA, Bota SE, Petrcich W, et al. Risk of Hospitalization for Serious Adverse Gastrointestinal Events Associated With Sodium Polystyrene Sulfonate Use in Patients of Advanced Age. JAMA internal medicine. 2019;179(8):1025–1033.

  160. Pitt B, Rossignol P. Potassium lowering agents: Recommendations for physician and patient education, treatment reappraisal, and serial monitoring of potassium in patients with chronic hyperkalemia. Pharmacol Res. 2017;118:2–4.

    Article  PubMed  Google Scholar 

  161. Kosiborod M, Rasmussen HS, Lavin P, et al. Effect of sodium zirconium cyclosilicate on potassium lowering for 28 days among outpatients with hyperkalemia: the HARMONIZE randomized clinical trial. JAMA. 2014;312(21):2223–33.

    Article  CAS  PubMed  Google Scholar 

  162. Weir MR, Bakris GL, Bushinsky DA, et al. Patiromer in patients with kidney disease and hyperkalemia receiving RAAS inhibitors. N Engl J Med. 2015;372(3):211–21.

    Article  CAS  PubMed  Google Scholar 

  163. Bakris GL, Pitt B, Weir MR, et al. Effect of patiromer on serum potassium level in patients with hyperkalemia and diabetic kidney disease: the AMETHYST-DN Randomized Clinical Trial. JAMA. 2015;314(2):151–61.

    Article  CAS  PubMed  Google Scholar 

  164. Roger SD, Spinowitz BS, Lerma EV, et al. Efficacy and safety of sodium zirconium cyclosilicate for treatment of hyperkalemia: an 11-month open-label extension of HARMONIZE. Am J Nephrol. 2019;50(6):473–80.

    Article  CAS  PubMed  Google Scholar 

  165. Spinowitz BS, Fishbane S, Pergola PE, et al. Sodium zirconium cyclosilicate among individuals with hyperkalemia: a 12-month phase 3 study. Clin J Am Soc Nephrol. 2019;14(6):798–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Roger SD, Lavin PT, Lerma EV, et al. Long-term safety and efficacy of sodium zirconium cyclosilicate for hyperkalaemia in patients with mild/moderate versus severe/end-stage chronic kidney disease: comparative results from an open-label, phase 3 study. Nephrol Dial Transplant. 2021;36(1):137–50.

    Article  CAS  PubMed  Google Scholar 

  167. Roger SD, Spinowitz BS, Lerma EV, et al. Sodium zirconium cyclosilicate increases serum bicarbonate concentrations among patients with hyperkalaemia: exploratory analyses from three randomized, multi-dose, placebo-controlled trials. Nephrol Dial Transplant. 2021;36(5):871–883

  168. Pitt B, Anker SD, Bushinsky DA, et al. Evaluation of the efficacy and safety of RLY5016, a polymeric potassium binder, in a double-blind, placebo-controlled study in patients with chronic heart failure (the PEARL-HF) trial. Eur Heart J. 2011;32(7):820–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Agarwal R, Rossignol P, Romero A, et al. Patiromer versus placebo to enable spironolactone use in patients with resistant hypertension and chronic kidney disease (AMBER): a phase 2, randomised, double-blind, placebo-controlled trial. Lancet. 2019;394(10208):1540–50.

    Article  CAS  PubMed  Google Scholar 

  170. Davar D, Dzutsev AK, McCulloch JA, et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science. 2021;371(6529):595–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Valdivielso JM, Betriu A, Martinez-Alonso M, et al. Factors predicting cardiovascular events in chronic kidney disease patients. Role of subclinical atheromatosis extent assessed by vascular ultrasound. PLoS ONE. 2017;12(10):e0186665.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Wright JT, Bakris G, Greene T, et al. Effect of blood pressure lowering and antihypertensive drug class on progression of hypertensive kidney disease: results from the AASK trial. JAMA. 2002;288(19):2421–31.

    Article  CAS  PubMed  Google Scholar 

  173. Bai XY, Miao DS, Li JR, et al. Transgenic mice overexpressing human fibroblast growth factor 23 (R176Q) delineate a putative role for parathyroid hormone in renal phosphate wasting disorders. Endocrinology. 2004;145(11):5269–79.

    Article  CAS  PubMed  Google Scholar 

  174. Torres VE, Abebe KZ, Chapman AB, et al. Angiotensin blockade in late autosomal dominant polycystic kidney disease. N Engl J Med. 2014;371(24):2267–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This Review was planned as part of the activity of the European Renal and Cardiovascular Medicine working (EURECAm) group and all authors are EURECAm members.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Valdivielso.

Ethics declarations

Funding

Sources of support: FIS/Fondos FEDER (PI18/01366, PI18/00610, PI19/00588, PI19/00815, DTS18/00032), ERA-PerMed-JTC2018 (KIDNEY ATTACK AC18/00064 and PERSTIGAN AC18/00071, ISCIII-RETIC (REDinREN RD016/0009), Sociedad Española de Nefrología, FRIAT, and Comunidad de Madrid en Biomedicina B2017/BMD-3686 CIFRA2-CM. PR is supported by the RHU Fight-HF, a public grant overseen by the French National Research Agency (ANR) as part of the second “Investissements d’Avenir” program (reference: ANR-15-RHUS-0004), by the French PIA project “Lorraine Université d’Excellence” (reference: ANR-15-IDEX-04-LUE), the ANR FOCUS-MR (reference: ANR-15-CE14-0032-01), ERA-CVD EXPERT (reference: ANR-16-ECVD-0002-02), Contrat de Plan Etat Lorraine IT2MP and FEDER Lorraine.

Conflict of interest

JMV has received research grants from Vifor Fresenius Medical Care Renal Pharma. AO has received consultancy or speaker fees or travel support from AstraZeneca, Amicus, Amgen, Fresenius Medical Care, Bayer, Sanofi-Genzyme, Menarini, Kyowa Kirin, Alexion, Otsuka, and Vifor Fresenius Medical Care Renal Pharma and is Director of the Catedra Mundipharma-UAM of diabetic kidney disease and the Catedra AstraZeneca-UAM of chronic kidney disease and electrolytes. LdV has received consultancy or speaker fees from Astellas, GSK, Roche, Vifor Fresenius, and Mundipharma. PR reports personal fees from Ablative Solutions, AstraZeneca, Bayer, Boehringer-Ingelheim, Corvidia, CVRx, Fresenius, G3P (stocks), Grunenthal, Idorsia, KBP, Novartis, NovoNordisk, edito Relypsa, Sanofi, Sequana Medical, Servier, Stealth Peptides, Vifor, and Vifor Fresenius Medical Care Renal Pharma and is a cofounder of CardioRenal, a company developing sensors for the home monitoring of K+ and creatinine. OB, RE, CJF, FM, PBM, and PS state no conflict of interest.

Ethics approval

Not applicable.

Consent

Not applicable.

Author contributions

JMV drafted the outline, wrote sections of the manuscript, composed figures, and coordinated the final assembly. The rest of the authors wrote different sections of the manuscript and built the tables.

Data availability statement

Not applicable.

Additional information

The original article has been updated: Due to Acknowledgment update.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valdivielso, J.M., Balafa, O., Ekart, R. et al. Hyperkalemia in Chronic Kidney Disease in the New Era of Kidney Protection Therapies. Drugs 81, 1467–1489 (2021). https://doi.org/10.1007/s40265-021-01555-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-021-01555-5

Navigation