Skip to main content
Log in

What keeps us ticking? Sinoatrial node mechano-sensitivity: the grandfather clock of cardiac rhythm

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

The rhythmic and spontaneously generated electrical excitation that triggers the heartbeat originates in the sinoatrial node (SAN). SAN automaticity has been thoroughly investigated, which has uncovered fundamental mechanisms involved in cardiac pacemaking that are generally categorised into two interacting and overlapping systems: the ‘membrane’ and ‘Ca2+ clock’. The principal focus of research has been on these two systems of oscillators, which have been studied primarily in single cells and isolated tissue, experimental preparations that do not consider mechanical factors present in the whole heart. SAN mechano-sensitivity has long been known to be a contributor to SAN pacemaking—both as a driver and regulator of automaticity—but its essential nature has been underappreciated. In this review, following a description of the traditional ‘clocks’ of SAN automaticity, we describe mechanisms of SAN mechano-sensitivity and its vital role for SAN function, making the argument that the ‘mechanics oscillator’ is, in fact, the ‘grandfather clock’ of cardiac rhythm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AP:

Action potential

Ca2+ :

Calcium

CaMKII:

Calcium/calmodulin-dependent protein kinase II

cAMP:

Cyclic adenosine monophosphate

HCN:

Hyperpolarisation-activated cyclic nucleotide-gated channels

I f :

“Funny” current

I Kr :

Rapid delayed rectifier potassium current

I Ks :

Slow delayed rectifier potassium current

K+ :

Potassium

MDP:

Maximum diastolic potential

MSP:

Maximum systolic potential

NCX:

Sodium-calcium exchanger

LCR:

Local calcium releases

Na+ :

Sodium

RyR:

Ryanodine receptors

SACNS :

Cation non-selective stretch-activated channels

SAN:

Sinoatrial node

SDD:

Spontaneous diastolic depolarisation

SERCA:

Sarco/endoplasmic reticulum calcium-ATPase

SR:

Sarcoplasmic reticulum

References

  • Abramovich-Sivan S, Akselrod S (1999) Phase response curve based model of the SA node: simulation by two-dimensional array of pacemaker cells with randomly distributed cycle lengths. Med Biol Eng Comput 37:482��491. https://doi.org/10.1007/BF02513334

  • Anumonwo JMB, Delmar M, Vinet A, Michfaels DC, Jalife J (1991) Phase resetting and entrainment of pacemaker activity in single sinus nodal cells. Circ Res 68:1138–1153. https://doi.org/10.1161/01.res.68.4.1138

  • Arai A, Kodama I, Toyama J (1996) Roles of Cl- channels and Ca2+ mobilization in stretch-induced increase of SA node pacemaker activity. Am J Physiol Heart Circ Physiol 270:H1726–H1735. https://doi.org/10.1152/ajpheart.1996.270.5.H1726

  • Bainbridge FA (1915) The influence of venous filling upon the rate of the heart. J Physiol 50:65–84. https://doi.org/10.1113/jphysiol.1915.sp001736

  • Bartos DC, Grandi E, Ripplinger CM (2015) Ion channels in the heart. Compr Physiol 5:1423–1464. https://doi.org/10.1002/cphy.c140069

  • Blinks JR (1956) Positive chronotropic effect of increasing right atrial pressure in the isolated mammalian heart. Am J Phys 186:299–303. https://doi.org/10.1152/ajplegacy.1956.186.2.299

  • Bogdanov KY, Maltsev VA, Vinogradova TM, Lyashkov AE, Spurgeon HA, Stern MD et al (2006) Membrane potential fluctuations resulting from submembrane Ca2+ releases in rabbit sinoatrial nodal cells impart an exponential phase to the late diastolic depolarization that controls their chronotropic state. Circ Res 99:979–987. https://doi.org/10.1161/01.RES.0000247933.66532.0b

  • Brennan JA, Chen Q, Gams A, Dyavanapalli J, Mendelowitz D, Peng W et al (2020) Evidence of superior and inferior sinoatrial nodes in the mammalian heart. JACC Clin Electrophysiol 6:1827–1840. https://doi.org/10.1016/j.jacep.2020.09.012

  • Brooks CM, Lu HH, Lange G, Mangi R, Shaw RB, Geoly K (1966) Effects of localized stretch of the sinoatrial node region of the dog heart. Am J Phys 211:1197–1202. https://doi.org/10.1152/ajplegacy.1966.211.5.1197

  • Calabrese B, Tabarean IV, Juranka P, Morris CE (2002) Mechanosensitivity of N-type calcium channel currents. Biophys J 83:2560–2574. 10.1016/S0006-3495(02)75267-3. https://doi.org/10.1016/S0006-3495(02)75267-3

  • Calloe K, Elmedyb P, Olesen SP, Jorgensen NK, Grunnet M (2005) Hypoosmotic cell swelling as a novel mechanism for modulation of cloned HCN2 channels. Biophys J 89:2159–2169. https://doi.org/10.1529/biophysj.105.063792

  • Chiou KK, Rocks JW, Chen CY, Cho S, Merkus KE, Rajaratnam A et al (2016) Mechanical signaling coordinates the embryonic heartbeat. Proc Natl Acad Sci U S A 113:8939–8944. https://doi.org/10.1073/pnas.1520428113

  • Cooper PJ, Kohl P (2005) Species- and preparation-dependence of stretch effects on sino-atrial node pacemaking. Ann N Y Acad Sci 1047:324–335. https://doi.org/10.1196/annals.1341.029

  • Cooper PJ, Lei M, Cheng LX, Kohl P (2000) Selected contribution: axial stretch increases spontaneous pacemaker activity in rabbit isolated sinoatrial node cells. J Appl Physiol 89:2099–2104. https://doi.org/10.1152/jappl.2000.89.5.2099

  • Coster ACF, Celler BG (2003) Phase response of model sinoatrial node cells. Ann Biomed Eng 31:271–283.https://doi.org/10.1114/1.1553455

  • Csepe TA, Kalyanasundaram A, Hansen BJ, Zhao J, Fedorov VV (2015) Fibrosis: a structural modulator of sinoatrial node physiology and dysfunction. Front Physiol 6:1–8. https://doi.org/10.3389/fphys.2015.00037

  • Deck KA (1964) Dehnungseffekte am spontansehlagenden, isolierten Sinusknoten. Pflugers Arch 280:120–130

  • Difrancesco D (2010) The role of the funny current in pacemaker activity. Circ Res 106:434–446. https://doi.org/10.1161/CIRCRESAHA.109.208041

  • Difrancesco D, Noble D (2012) The funny current has a major pacemaking role in the sinus node. Heart Rhythm 9:299–301. https://doi.org/10.1016/j.hrthm.2011.09.021

  • DiFrancesco ML, Mesirca P, Bidaud I, Isbrandt D, Mangoni ME (2021) The funny current in genetically modified mice. Prog Biophys Mol Biol. https://doi.org/10.1016/j.pbiomolbio.2021.06.003

  • Donald DE, Shepherd JT (1978) Reflexes from the heart and lungs: physiological curiosities or important regulatory mechanisms. Cardiovasc Res 12:449–469. https://doi.org/10.1093/cvr/12.8.449

  • Fenske S, Krause SC, Hassan SIH, Becirovic E, Auer F, Bernard R et al (2013) Sick sinus syndrome in HCN1-deficient mice. Circulation 128:2585–2594. https://doi.org/10.1161/CIRCULATIONAHA.113.003712

  • Gaskell WH (1882) Preliminary observations on the innervation of the heart of the tortoise. J Physiol 3:369–379. https://doi.org/10.1113/jphysiol.1882.sp000110

  • Guevara MR, Jongsma HJ (1990) Phase resetting in a model of sinoatrial nodal membrane: ionic and topological aspects. Am J Physiol Heart Circ Physiol 258:734–747. https://doi.org/10.1152/ajpheart.1990.258.3.H734

  • Guharay F, Sachs F (1984) Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J Physiol 352:685–701. https://doi.org/10.1113/jphysiol.1984.sp015317

  • Hales PW, Schneider JE, Burton RAB, Wright BJ, Bollensdorff C, Kohl P (2012) Histo-anatomical structure of the living isolated rat heart in two contraction states assessed by diffusion tensor MRI. Prog Biophys Mol Biol 110:319–330. https://doi.org/10.1016/j.pbiomolbio.2012.07.014

  • Hoffman B, Cranefield P (1960) Electrophysiology of the heart. McGraw-Hill, New York

  • Huang X, Mi Y, Qian Y, Hu G (2011) Phase-locking behaviors in an ionic model of sinoatrial node cell and tissue. Phys Rev E Stat Nonlin Soft Matter Phys 83:061917. https://doi.org/10.1103/PhysRevE.83.061917

  • Iribe G, Ward CW, Camelliti P, Bollensdorff C, Mason F, Burton RAB et al (2009) Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate. Circ Res 104:787–795. https://doi.org/10.1161/CIRCRESAHA.108.193334

  • Jalife J (1984) Mutual entrainment and electrical coupling as mechanisms for synchronous firing of rabbit sino-atrial pace-maker cells. J Physiol 356:221–243. https://doi.org/10.1113/jphysiol.1984.sp015461

  • Jalife J, Antzelevitch C (1979) Phase resetting and annihilation of pacemaker activity in cardiac tissue. Science 206(80):695–697. https://doi.org/10.1126/science.493975

  • Jarisch A, Richter H (1939) Die afferenten bahnen des veratrineffektes in den herznerven. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol 193:355–371. https://doi.org/10.1007/BF01859921

  • Keith A, Flack M (1907) The form and nature of the muscular connections between the primary divisions of the vertebrate heart. J Anat Physiol 41:172–189

  • Kistler PM, Sanders P, Fynn SP, Stevenson IH, Spence SJ, Vohra JK et al (2004) Electrophysiologic and electroanatomic changes in the human atrium associated with age. J Am Coll Cardiol 44:109–116. https://doi.org/10.1016/j.jacc.2004.03.044

  • Kohl P, Noble D (1996) Mechanosensitive connective tissue: potential influence on heart rhythm. Cardiovasc Res 32:62–68. https://doi.org/10.1016/S0008-6363(95)00224-3

  • Kohl P, Kamkin AG, Kiseleva IS, Noble D (1994) Mechanosensitive fibroblasts in the sinoatrial node region of rat heart: interaction with cardiomyocytes and possible role. Exp Physiol 79:943–956. https://doi.org/10.1113/expphysiol.1994.sp003819

  • Krogh-Madsen T, Glass L, Doedel EJ, Guevara MR (2004) Apparent discontinuities in the phase-resetting response of cardiac pacemakers. J Theor Biol 230:499–519. https://doi.org/10.1016/j.jtbi.2004.03.027

  • Lakatta EG, DiFrancesco D (2009) What keeps us ticking: a funny current, a calcium clock, or both? J Mol Cell Cardiol 47:157–170. https://doi.org/10.1016/j.yjmcc.2009.03.022

  • Lakatta EG, Vinogradova TM, Maltsev VA (2008) The missing link in the mystery of normal automaticity of cardiac pacemaker cells. Ann N Y Acad Sci 1123:41–57. https://doi.org/10.1196/annals.1420.006

  • Lakatta EG, Maltsev VA, Vinogradova TM (2010) A coupled SYSTEM of intracellular Ca2+ clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart’s pacemaker. Circ Res 106:659–673. https://doi.org/10.1161/CIRCRESAHA.109.206078

  • Lange G, Lu HH, Chang A, Brooks CM (1966) Effect of stretch on the isolated cat sinoatrial node. Am J Phys 211:1192–1196. https://doi.org/10.1152/ajplegacy.1966.211.5.1192

  • Lei M, Goddard C, Liu J, Léoni AL, Royer A, Fung SSM et al (2005) Sinus node dysfunction following targeted disruption of the murine cardiac sodium channel gene Scn5a. J Physiol 567:387–400. https://doi.org/10.1113/jphysiol.2005.083188

  • Li N, Csepe TA, Hansen BJ, Dobrzynski H, Higgins RSD, Kilic A et al (2015) Molecular mapping of sinoatrial node HCN channel expression in the human heart. Circ Arrhythm Electrophysiol 8:1219–1227.https://doi.org/10.1161/CIRCEP.115.003070

  • Lin W, Laitko U, Juranka PF, Morris CE (2007) Dual stretch responses of mHCN2 pacemaker channels: accelerated activation, accelerated deactivation. Biophys J 92:1559–1572.https://doi.org/10.1529/biophysj.106.092478

  • Lyford GL, Strege PR, Shepard A, Ou Y, Ermilov L, Miller SM et al (2002) α1C (CaV1.2) L-type calcium channel mediates mechanosensitive calcium regulation. Am J Physiol Cell Physiol 283:C1001–C1008. https://doi.org/10.1152/ajpcell.00140.2002

  • MacDonald EA, Stoyek MR, Rose RA, Quinn TA (2017) Intrinsic regulation of sinoatrial node function and the zebrafish as a model of stretch effects on pacemaking. Prog Biophys Mol Biol 130:198–211. https://doi.org/10.1016/j.pbiomolbio.2017.07.012

  • MacDonald EA, Madl J, Greiner J, Ramadan AF, Wells SM, Torrente AG et al (2020a) Sinoatrial node structure, mechanics, electrophysiology and the chronotropic response to stretch in rabbit and mouse. Front Physiol 11:809. https://doi.org/10.3389/fphys.2020.00809

  • MacDonald EA, Rose RA, Quinn TA (2020b) Neurohumoral control of sinoatrial node activity and heart rate: insight from experimental models and findings from humans. Front Physiol 11:170. https://doi.org/10.3389/fphys.2020.00170

  • Mangoni ME, Nargeot J (2008) Genesis and regulation of the heart automaticity. Physiol Rev 88:919–982. https://doi.org/10.1152/physrev.00018.2007

  • Mangoni ME, Couette B, Bourinet E, Platzer J, Reimer D, Striessnig J et al (2003) Functional role of L-type Cav1.3 Ca2+ channels in cardiac pacemaker activity. Proc Natl Acad Sci U S A 100:5543–5548. https://doi.org/10.1073/pnas.0935295100

  • Mattick P, Parrington J, Odia E, Simpson A, Collins T, Terrar D (2007) Ca2+-stimulated adenylyl cyclase isoform AC1 is preferentially expressed in guinea-pig sino-atrial node cells and modulates the If pacemaker current. J Physiol 582:1195–1203. https://doi.org/10.1113/jphysiol.2007.133439

  • Mesirca P, Torrente AG, Mangoni ME (2015) Functional role of voltage gated Ca2+ channels in heart automaticity. Front Physiol 6:19. https://doi.org/10.3389/fphys.2015.00019

  • Morris C (2011) Pacemaker, potassium, calcium, sodium: stretch modulation of the voltage-gated channels. In: Kohl P, Sachs F, Franz M (eds) Cardiac Mechano-Electric Coupling and Arrhythmias. University Press, Oxford, Oxford, pp 42–49. https://doi.org/10.1093/med/9780199570164.003.0006

  • Morris GM, Kalman JM (2014) Fibrosis, electrics and genetics - perspectives on sinoatrial node disease. Circ J 78:1272–1282. https://doi.org/10.1253/circj.cj-14-0419

  • Morton JB, Sanders P, Vohra JK, Sparks PB, Morgan JG, Spence SJ et al (2003) Effect of chronic right atrial stretch on atrial electrical remodeling in patients with an atrial septal defect. Circulation 107:1775–1782. https://doi.org/10.1161/01.CIR.0000058164.68127.F2

  • Niederer S, Lumens J, Trayanova NA (2019) Computational models in cardiology. Nat Rev Cardiol 2:100–111. https://doi.org/10.1038/s41569-018-0104-y

  • Noble D, Noble PJ, Fink M (2010) Competing oscillators in cardiac pacemaking. Circ Res 106:1791–1797. doi: 10.1161/CIRCRESAHA.110.218875

  • Pathak CL (1973) Autoregulation of chronotropic response of the heart through pacemaker stretch. Cardiology 58:45–64. https://doi.org/10.1159/000169618

  • Peyronnet R, Nerbonne JM, Kohl P (2016) Cardiac mechano-gated ion channels and arrhythmias. Circ Res 118:311–329. doi: 10.1161/CIRCRESAHA.115.305043

  • Quinn TA (2015) Cardiac mechano-electric coupling: a role in regulating normal function of the heart? Cardiovasc Res 108:1–3. https://doi.org/10.1093/cvr/cvv203

  • Quinn TA, Kohl P (2011) Systems biology of the heart: hype or hope? Ann N Y Acad Sci 1245:40–43. https://doi.org/10.1111/j.1749-6632.2011.06327.x

  • Quinn TA, Kohl P (2012) Mechano-sensitivity of cardiac pacemaker function: pathophysiological relevance, experimental implications, and conceptual integration with other mechanisms of rhythmicity. Prog Biophys Mol Biol 110:257–268. https://doi.org/10.1016/j.pbiomolbio.2012.08.008

  • Quinn TA, Kohl P (2013) Combining wet and dry research: experience with model development for cardiac mechano-electric structure-function studies. Cardiovasc Res 97:601–611. https://doi.org/10.1093/cvr/cvt003

  • Quinn TA, Kohl P (2016) Rabbit models of cardiac mechano-electric and mechano-mechanical coupling. Prog Biophys Mol Biol 121:110–122. https://doi.org/10.1016/j.pbiomolbio.2016.05.003

  • Quinn TA, Kohl P (2021) Cardiac mechano-electric coupling: acute effects of mechanical stimulation on heart rate and rhythm. Physiol Rev 101:37–92. https://doi.org/10.1152/physrev.00036.2019

  • Quinn TA, Kohl P, Ravens U (2014) Cardiac mechano-electric coupling research: fifty years of progress and scientific innovation. Prog Biophys Mol Biol 115:71–75. https://doi.org/10.1016/j.pbiomolbio.2014.06.007

  • Quinn TA, Camelliti P, Rog-Zielinska EA, Siedlecka U, Poggioli T, O’Toole ET et al (2016) Electrotonic coupling of excitable and nonexcitable cells in the heart revealed by optogenetics. Proc Natl Acad Sci USA 113:14852–14857. https://doi.org/10.1073/pnas.1611184114

  • Rajala GM, Kalbfleisch JH, Kaplan S (1976) Evidence that blood pressure controls heart rate in the chick embryo prior to neural control. J Embryol Exp Morpholog 36:685–695. doi: 10.1242/dev.36.3.685

  • Rajala GM, Pinter MJ, Kaplan S (1977) Response of the quiescent heart tube to mechanical stretch in the intact chick embryo. Dev Biol 61:330–337. https://doi.org/10.1016/0012-1606(77)90302-5

  • Reiner VS, Antzelevitch C (1985) Phase resetting and annihilation in a mathematical model of sinus node. Am J Physiol 249:H1143-H1153. doi: 10.1152/ajpheart.1985.249.6.H1143

  • Roddie IC, Shepherd JT, Whelan RF (1957) Reflex changes in vasoconstrictor tone in human skeletal muscle in response to stimulation of receptors in a low-pressure area of the intrathoracic vascular bed. J Physiol 139:369–376. https://doi.org/10.1113/jphysiol.1957.sp005897

  • Rosen MR, Nargeot J, Salama G (2012) The case for the funny current and the calcium clock. Heart Rhythm 9:616–618. https://doi.org/10.1016/j.hrthm.2011.10.008

  • Sanders P, Morton JB, Davidson NC, Spence SJ, Vohra JK, Sparks PB et al (2003) Electrical remodeling of the atria in congestive heart failure: electrophysiological and electroanatomic mapping in humans. Circulation 108:1461–1468. https://doi.org/10.1161/01.CIR.0000090688.49283.67

  • Sano T, Sawanobori T, Adaniya H (1978) Mechanism of rhythm determination among pacemaker cells of the mammalian sinus node. Am J Physiol Heart Circ Physiol 235:H379–H384. https://doi.org/10.1152/ajpheart.1978.235.4.H379

  • Sénatore S, Reddy VR, Sémériva M, Perrin L, Lalevée N (2010) Response to mechanical stress is mediated by the TRPA channel painless in the Drosophila heart. PLoS Genet 6:e1001088. https://doi.org/10.1371/journal.pgen.1001088

  • Sirenko S, Yang D, Li Y, Lyashkov AE, Lukyanenko YO, Lakatta EG et al (2013) Ca2+-dependent phosphorylation of Ca2+ cycling proteins generates robust rhythmic local Ca2+ releases in cardiac pacemaker cells. Sci Signal 6:ra6. https://doi.org/10.1126/scisignal.2003391

  • Sparks PB, Mond HG, Vohra JK, Jayaprakash S, Kalman JM (1999) Electrical remodeling of the atria following loss of atrioventricular synchrony. Circulation 100:1894–1900. https://doi.org/10.1161/01.cir.100.18.1894

  • Starzinsky, von Bezold A (1867) Von dem einflusse des intracardialen blutdruckes auf die hauflgkeit der herzschlage. Untersuch Phys Lab 195–214

  • Torrente AG, Mesirca P, Neco P, Rizzetto R, Dubel S, Barrere C et al (2016) L-type Cav1.3 channels regulate ryanodine receptor-dependent Ca2+ release during sino-atrial node pacemaker activity. Cardiovasc Res 109:451–461. https://doi.org/10.1093/cvr/cvw006

  • Travanova NA (2011) Whole-heart modeling: applications to cardiac electrophysiology and electromechanics. Circ Res 108:113–128. https://doi.org/10.1161/CIRCRESAHA.110.223610

  • Tsalikakis DG, Zhang HG, Fotiadis DI, Kremmydas GP, Michalis K (2007) Phase response characteristics of sinoatrial node cells. Comput Biol Med 37:8–20. https://doi.org/10.1016/j.compbiomed.2005.09.011

  • Ushiyama J, Brooks CMC (1977) Interaction of oscillators: effect of sinusoidal stretching of the sinoatrial node on nodal rhythm. J Electrocardiol 10:39–44. https://doi.org/10.1016/s0022-0736(77)80029-0

  • Verheijck EE, Wilders R, Joyner RW, Golod DA, Kumar R, Jongsma HJ et al (1998) Pacemaker synchronization of electrically coupled rabbit sinoatrial node cells. J Gen Physiol. 111:95–112. https://doi.org/10.1085/jgp.111.1.95

  • Vinogradova TM, Lakatta EG (2009) Regulation of basal and reserve cardiac pacemaker function by interactions of cAMP-mediated PKA-dependent Ca2+ cycling with surface membrane channels. J Mol Cell Cardiol 47:456–474. https://doi.org/10.1016/j.yjmcc.2009.06.014

  • Vinogradova TM, Zhou Y, Bogdanov KY, Yang D, Kuschel M, Cheng H et al (2000) Sinoatrial node pacemaker activity requires Ca 2+ /calmodulin-dependent protein kinase II activation. Circ Res 87:760–767. https://doi.org/10.1161/01.res.87.9.760

  • Vinogradova TM, Lyashkov AE, Zhu W, Ruknudin AM, Sirenko S, Yang D et al (2006) High basal protein kinase A-dependent phosphorylation drives rhythmic internal Ca2+ store oscillations and spontaneous beating of cardiac pacemaker cells. Circ Res 98:505–514. https://doi.org/10.1161/01.RES.0000204575.94040.d1

  • von Bezold A, Hirt L (1867) Über die physiologischen wirkungen des essigsauren veratrins. Untersuchungen Aus Dem Physiol Lab Wurzbg 75–156

  • Yaniv Y, Maltsev VA, Escobar AL, Spurgeon HA, Ziman BD, Stern MD et al (2011) Beat-to-beat Ca2+-dependent regulation of sinoatrial nodal pacemaker cell rate and rhythm. J Mol Cell Cardiol 51:902–905. https://doi.org/10.1016/j.yjmcc.2011.08.029

  • Ypey DL, Van Meerwijk WPM, de Bruin G (1982) Suppression of pacemaker activity by rapid repetitive phase delay. Biol Cybern 45:187–194. https://doi.org/10.1007/BF00336191

Download references

Funding

This work was supported by the Natural Sciences and Engineering Research Council of Canada (RGPIN-2016-04879 to T.A.Q.), the Heart and Stroke Foundation of Canada (G-18-0022185 to T.A.Q.), and the Canadian Institutes of Health Research (MOP 342562 to T.A.Q.). E.A.M. is supported by a British Heart Foundation Programme Grant (RG/20/6/35095).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Alexander Quinn.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MacDonald, E.A., Quinn, .A. What keeps us ticking? Sinoatrial node mechano-sensitivity: the grandfather clock of cardiac rhythm. Biophys Rev 13, 707–716 (2021). https://doi.org/10.1007/s12551-021-00831-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-021-00831-8

Keywords

Navigation