Skip to main content

Advertisement

Log in

Cardiac Resynchronization Therapy Update: Evolving Indications, Expanding Benefit?

  • Heart Failure (MR Mehra and E Joyce, Section Editors)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Cardiac resynchronisation therapy (CRT) is an effective intervention for appropriately selected patients with heart failure, but exactly how it works is uncertain. Recent data suggest that much, or perhaps most, of the benefits of CRT are not delivered by re-coordinating left ventricular dyssynchrony. Atrio-ventricular resynchronization, reduction in mitral regurgitation and prevention of bradycardia are other potential mechanisms of benefit that will vary from one patient to the next and over time. Because there is no single therapeutic target, it is unlikely that any single measure will accurately predict benefit. The only clinical characteristic that appears to be a useful predictor of the benefits of CRT is a QRS duration of >140 ms. Many new approaches are being developed to try to improve the effectiveness of and extend the indications for CRT. These include smart pacing algorithms, better pacing-site targeting, new sensors, multipoint pacing, remote device monitoring and leadless endocardial pacing. Whether CRT is effective in patients with atrial fibrillation or whether adding a defibrillator function to CRT improves prognosis awaits further evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Birnie D, Lemke B, Aonuma K, Krum H, Lee KLF, Gasparini M, et al. Clinical outcomes with synchronized left ventricular pacing: analysis of the adaptive CRT trial. Heart Rhythm. 2013;10(9):1368–74.

    Article  PubMed  Google Scholar 

  2. Cleland JGF, Daubert J-C, Erdmann E, Freemantle N, Gras D, Kappenberger L, et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med. 2005;352(15):1539–49. Individual patient data meta-analysis of 5 of the landmark randomized controlled trials of CRT showing that patients with a QRS >140 msec are likely to benefit. No other patient characteristic was a useful predictor of the effect of CRT on morbidity or mortality in a multivariable model. Provided their QRS duration was >140 msec, patients benefitted regardless of aetiology, QRS morphology or LVEF (up to 40%).

    Article  CAS  PubMed  Google Scholar 

  3. Herz ND, Engeda J, Zusterzeel R, Sanders WE, O'Callaghan KM, Strauss DG, et al. Sex differences in device therapy for heart failure: utilization, outcomes, and adverse events. J Women's Health. 2015;24(4):261–71.

    Article  Google Scholar 

  4. Leyva F, Nisam S, Auricchio A. 20 Years of cardiac resynchronization therapy. J Am Coll Cardiol. 2014;64(10):1047–58.

    Article  PubMed  Google Scholar 

  5. Kass DA. An epidemic of dyssynchrony. But what does it mean? J Am Coll Cardiol. 2008;51(1):12–7.

    Article  PubMed  Google Scholar 

  6. Parsai C, Bijnens B, Sutherland GR, Baltabaeva A, Claus P, Marciniak M, et al. Toward understanding response to cardiac resynchronization therapy: left ventricular dyssynchrony is only one of multiple mechanisms. Eur Heart J. 2009;30(8):940–9.

    Article  PubMed  Google Scholar 

  7. Mooyaart EAQ, Marsan NA, van Bommel RJ, Thijssen J, Borleffs CJW, Delgado V, et al. Comparison of long-term survival of men versus women with heart failure treated with cardiac resynchronization therapy. Am J Clin Pathol. 2011;108(1):63–8.

    Google Scholar 

  8. Duckett SG, Camara O, Ginks MR, Bostock J, Chinchapatnam P, Sermesant M, et al. Relationship between endocardial activation sequences defined by high-density mapping to early septal contraction (septal flash) in patients with left bundle branch block undergoing cardiac resynchronization therapy. Europace. 2012;14(1):99–106.

    Article  PubMed  Google Scholar 

  9. Bleeker GB. Effect of posterolateral scar tissue on clinical and echocardiographic improvement after cardiac resynchronization therapy. Circulation. 2006;113(7):969–76.

    Article  PubMed  Google Scholar 

  10. Aiba T, Hesketh GG, Barth AS, Liu T, Daya S, Chakir K, et al. Electrophysiological consequences of dyssynchronous heart failure and its restoration by resynchronization therapy. Circulation. 2009;119(9):1220–30.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Xu Y-Z, Friedman PA, Webster T, Brooke K, Hodge DO, Wiste HJ, et al. Cardiac resynchronization therapy: do women benefit more than men? J Cardiovasc Electrophysiol. 2011;23(2):172–8.

    Article  PubMed  Google Scholar 

  12. Auricchio A, Ding J, Spinelli JC, Kramer AP, Salo RW, Hoersch W, et al. Cardiac resynchronization therapy restores optimal atrioventricular mechanical timing in heart failure patients with ventricular conduction delay. J Am Coll Cardiol. 2002;39(7):1163–9.

    Article  PubMed  Google Scholar 

  13. Zusterzeel R, Spatz ES, Curtis JP. Cardiac resynchronization therapy in women versus men observational comparative effectiveness study from the National Cardiovascular Data Registry. Quality and Outcomes. 2015.

  14. Kyriacou A, Pabari PA, Francis DP. Cardiac resynchronization therapy is certainly cardiac therapy, but how much resynchronization and how much atrioventricular delay optimization? Heart Fail Rev. 2012;17(6):727–36.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Chung ES, Leon AR, Tavazzi L, Sun JP, Nihoyannopoulos P, Merlino J, et al. Results of the Predictors of Response to CRT (PROSPECT) trial. Circulation. 2008;117(20):2608–16.

    Article  PubMed  Google Scholar 

  16. Nelson GS, Berger RD, Fetics BJ, Talbot M, Spinelli JC, Hare JM, et al. Left ventricular or biventricular pacing improves cardiac function at diminished energy cost in patients with dilated cardiomyopathy and left bundle-branch block. Circulation. 2000;102(25):3053–9.

    Article  CAS  PubMed  Google Scholar 

  17. Kyriacou A, Whinnett ZI, Sen S, Pabari PA, Wright I, Cornelussen R, et al. Improvement in coronary blood flow velocity with acute biventricular pacing is predominantly due to an increase in a diastolic backward-travelling decompression (suction) wave. Circulation. 2012;126(11):1334–44.

    Article  PubMed  Google Scholar 

  18. Ruschitzka F, Abraham WT, Singh JP, Bax JJ, Borer JS, Brugada J, et al. Cardiac-resynchronization therapy in heart failure with a narrow QRS complex. N Engl J Med. 2013;369(15):1395–405. This landmark RCT demonstrates that patients with a QRS >130ms and echocardiographic dyssynchrony may be harmed by CRT.

    Article  CAS  PubMed  Google Scholar 

  19. Sims DB, Mignatti A, Colombo PC, Uriel N, Garcia LI, Ehlert FA, et al. Rate responsive pacing using cardiac resynchronization therapy in patients with chronotropic incompetence and chronic heart failure. Europace. 2011;13(10):1459–63.

    Article  PubMed  Google Scholar 

  20. Cleland JG, Cullington D, Khaleva O, Tageldien A. Cardiac resynchronization therapy: dyssynchrony imaging from a heart failure perspective. Curr Opin Cardiol. 2008;23(6):634–45.

    Article  PubMed  Google Scholar 

  21. Grosu A, Senni M, Lacovoni A, Gori M, Cant UF, Bisetti S, et al. Cardiac resynchronization in combination with beta blocker treatment in advanced chronic heart failure (CARIBE-HF): the results of the CARIBE-HF study. Acta Cardiol. 2011;66(5):573–80.

    PubMed  Google Scholar 

  22. Chakir K, Daya SK, Aiba T, Tunin RS, Dimaano VL, Abraham TP, et al. Mechanisms of enhanced β-adrenergic reserve from cardiac resynchronization therapy. Circulation. 2009;119(9):1231–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Strauss DG, Selvester RH, Wagner GS. Defining left bundle branch block in the era of cardiac resynchronization therapy. Am J Clin Pathol. 2011;107(6):927–34.

    Google Scholar 

  24. Wikstrom G, Blomstrom-Lundqvist C, Andren B, Lonnerholm S, Blomstrom P, Freemantle N, et al. The effects of aetiology on outcome in patients treated with cardiac resynchronization therapy in the CARE-HF trial. Eur Heart J. 2008;30(7):782–8.

    Article  Google Scholar 

  25. Agnetti G, Kaludercic N, Kane LA, Elliott ST, Guo Y, Chakir K, et al. Modulation of mitochondrial proteome and improved mitochondrial function by biventricular pacing of dyssynchronous failing hearts. Circ Cardiovasc Genet. 2010;3(1):78–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Prinzen FW, Auricchio A. Is echocardiographic assessment of dyssynchrony useful to select candidates for cardiac resynchronization therapy? Echocardiography is not useful before cardiac resynchronization therapy if QRS duration is available. Circ: Cardiovasc Imaging. 2008;1(1):70–8.

    Google Scholar 

  27. Hoogslag GE, Hoke U, Thijssen J, Auger D, Marsan NA, Wolterbeek R, et al. Clinical, echocardiographic, and neurohormonal response to cardiac resynchronization therapy: are they interchangeable? PACE–Pacing Clin Electrophysiol. 2013;36(11):1391–401.

    Article  PubMed  Google Scholar 

  28. Ritter P, Padeletti L, Gillio-Meina L, Gaggini G. Determination of the optimal atrioventricular delay in DDD pacing. Comparison between echo and peak endocardial acceleration measurements. Europace. 1999;1(2):126–30.

    Article  CAS  PubMed  Google Scholar 

  29. Fornwalt BK, Sprague WW, Bedell P, Suever JD, Gerritse B, Merlino JD, et al. Agreement is poor among current criteria used to define response to cardiac resynchronization therapy. Circulation. 2010;121(18):1985–91.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Leon AR, Abraham WT, Curtis AB, Daubert JP, Fisher WG, Gurley J, et al. Safety of transvenous cardiac resynchronization system implantation in patients with chronic heart failure: combined results of over 2,000 patients from a multicenter study program. J Am Coll Cardiol. 2005;46(12):2348–56.

    Article  PubMed  Google Scholar 

  31. Boidol J, Sredniawa B, Kowalski O, Szulik M, Mazurek M, Sokal A, et al. Many response criteria are poor predictors of outcomes after cardiac resynchronization therapy: validation using data from the randomized trial. Europace. 2013;15(6):835–44.

    Article  PubMed  Google Scholar 

  32. Cleland J, Freemantle N, Ghio S, Fruhwald F, Shankar A, Marijanowski M, et al. Predicting the long-term effects of cardiac resynchronization therapy on mortality from baseline variables and the early response a report from the CARE-HF (Cardiac Resynchronization in Heart Failure) trial. J Am Coll Cardiol. 2008;52(6):438–45.

    Article  PubMed  Google Scholar 

  33. Solomon SD, Foster E, Bourgoun M, Shah A, Viloria E, Brown MW, et al. Effect of cardiac resynchronization therapy on reverse remodeling and relation to outcome: multicenter automatic defibrillator implantation trial: cardiac resynchronization therapy. Circulation. 2010;122(10):985–92.

    Article  PubMed  Google Scholar 

  34. Cleland JG, Abraham WT, Linde C, Gold MR, Young JB, Claude Daubert J, et al. An individual patient meta-analysis of five randomized trials assessing the effects of cardiac resynchronization therapy on morbidity and mortality in patients with symptomatic heart failure. European Heart Journal. 2013 Jul 29.

  35. Cleland JGF, Mareev Y, Linde C. Reflections on EchoCRT: sound guidance on QRS duration and morphology for CRT?. European Heart Journal. 2015 Jul 14;ehv264.

  36. Cleland JGF, Butcher C. When is it appropriate to withdraw cardiac resynchronization therapy? Guesses and evidence. JACC: Heart Failure. 2015;3(4):337–9.

    PubMed  Google Scholar 

  37. Boriani G, Muller CP, Seidl KH, Grove R, Vogt JUR, Danschel W, et al. Randomized comparison of simultaneous biventricular stimulation versus optimized interventricular delay in cardiac resynchronization therapy. The Resynchronization for the Hemodynamic Treatment for Heart Failure Management II implantable cardioverter defibrillator (RHYTHM II ICD) study. Am Heart J. 2006;151(5):1057–65.

    Article  Google Scholar 

  38. Sohaib SMA, Chen Z, Whinnett ZI, Bouri S, Dickstein K, Linde C, et al. Meta-analysis of symptomatic response attributable to the pacing component of cardiac resynchronization therapy. Eur J Heart Fail. 2013;15(12):1419–28. This paper describes the incremental benefit of CRT on symptoms above medical therapy to be 16%. However, it remains important to remember that CRT may prevent clinical deterioration without the benefit of symptomatic improvement as severity of symptoms do not determine prognosis with CRT.

    Article  PubMed  Google Scholar 

  39. Cheng A, Gold MR, Waggoner AD, Meyer TE, Seth M, Rapkin J, et al. Potential mechanisms underlying the effect of gender on response to cardiac resynchronization therapy: insights from the SMART-AV multicenter trial. Heart Rhythm. 2012;9(5):736–41.

    Article  PubMed  Google Scholar 

  40. Brignole M, Auricchio A, Baron-Esquivias G, Bordachar P, Boriani G, Breithardt OA, et al. 2013 ESC guidelines on cardiac pacing and cardiac resynchronization therapy: the Task Force on cardiac pacing and resynchronization therapy of the European Society of Cardiology (ESC). Developed in collaboration with the European Heart Rhythm Association (EHRA). Eur Heart J. 2013;34(29):2281–329.

    Article  PubMed  Google Scholar 

  41. Velazquez EJ, Lee KL, Deja MA, Jain A, Sopko G, Marchenko A, et al. Coronary-artery bypass surgery in patients with left ventricular dysfunction. N Engl J Med. 2011;364(17):1607–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Moss AJ, Hall WJ, Cannom DS, Klein H, Brown MW, Daubert JP, et al. Cardiac-resynchronization therapy for the prevention of heart-failure events. N Engl J Med. 2009;361(14):1329–38.

    Article  PubMed  Google Scholar 

  43. Curtis AB, Worley SJ, Adamson PB, Chung ES, Niazi I, Sherfesee L, et al. Biventricular pacing for atrioventricular block and systolic dysfunction. N Engl J Med. 2013;368(17):1585–93.

    Article  CAS  PubMed  Google Scholar 

  44. Auger D, HÖKE U, Bax JJ, Boersma E, Delgado V. Effect of atrioventricular and ventriculoventricular delay optimization on clinical and echocardiographic outcomes of patients treated with cardiac resynchronization therapy: a meta-analysis. Am Heart J. 2013;166(1):20–9.

    Article  PubMed  Google Scholar 

  45. Chung ES, Katra R, Ghio S, Bax J, Gerritse B, Peterson BJ, et al. Cardiac resynchronization therapy in patients with left ventricular ejection fraction above 35%. Journal of Cardiac Failure. 2009 Jan 1;15(6S).

  46. Steffel J, Robertson M, Singh JP, Abraham WT, Bax JJ, Borer JS, et al. The effect of QRS duration on cardiac resynchronization therapy in patients with a narrow QRS complex: a subgroup analysis of the EchoCRT trial. Eur Heart J. 2015 May.

  47. Finegold J, Bordachar P, Kyriacou A, Sohaib SMA, Kanagaratnam P, Ploux S, et al. Atrioventricular delay optimization of cardiac resynchronisation therapy: comparison of non-invasive blood pressure with invasive haemodynamic measures. Int J Cardiol. 2015;180:221–2.

    Article  PubMed  Google Scholar 

  48. Koplan BA, Kaplan AJ, Weiner S, Jones PW, Seth M, Christman SA. Heart failure decompensation and all-cause mortality in relation to percent biventricular pacing in patients with heart failure. Is a goal of 100% biventricular pacing necessary? J Am Coll Cardiol. 2009;53(4):355–60.

    Article  PubMed  Google Scholar 

  49. Cleland JGF, Freemantle N. QRS morphology as a predictor of the response to cardiac resynchronisation therapy: fact or fashion? Heart. 2015 Jul 17:heartjnl–2015–307553. Summary of the effect of CRT in patients with right bundle branch block.

  50. Cleland JGF, Keshavarzi F, Pellicori P, Dicken B. Case selection for cardiac resynchronization in atrial fibrillation. Heart Failure Clin. 2013;9(4):461–74.

    Article  Google Scholar 

  51. Kwon DH, Hachamovitch R, Adeniyi A, Nutter B, Popovic ZB, Wilkoff BL, et al. Myocardial scar burden predicts survival benefit with implantable cardioverter defibrillator implantation in patients with severe ischaemic cardiomyopathy: influence of gender. Heart. 2014;100(3):206–13.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Khan FZ, Virdee MS, Palmer CR, Pugh PJ, O'Halloran D, Elsik M, et al. Targeted left ventricular lead placement to guide cardiac resynchronization therapy. J Am Coll Cardiol. 2012;59(17):1509–18.

    Article  PubMed  Google Scholar 

  53. Auricchio A, Kloss M, Trautmann SI, Rodner S, Klein H. Exercise performance following cardiac resynchronization therapy in patients with heart failure and ventricular conduction delay. Am J Cardiol. 2002;89(2):198–203.

    Article  PubMed  Google Scholar 

  54. Fornwalt BK, Sprague WW, BeDell P, Suever JD, Gerritse B, Merlino JD, et al. Agreement is poor among current criteria used to define response to cardiac resynchronization therapy. Circulation. 2010;121(18):1985–91.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Saxon LA, Hayes DL, Gilliam FR, Heidenreich PA, Day J, Seth M, et al. Long-term outcome after ICD and CRT implantation and influence of remote device follow-up: the ALTITUDE survival study. Circulation. 2010;122(23):2359–67.

    Article  PubMed  Google Scholar 

  56. Rao RK, Kumar UN, Schafer J, Viloria E, De Lurgio D, Foster E. Reduced ventricular volumes and improved systolic function with cardiac resynchronization therapy: a randomized trial comparing simultaneous biventricular pacing, sequential biventricular pacing, and left ventricular pacing. Circulation. 2007;115(16):2136–44.

    Article  PubMed  Google Scholar 

  57. Sohaib SMA, Kyriacou A, Jones S, Manisty CH, Mayet J, Kanagaratnam P, et al. Evidence that conflict regarding size of haemodynamic response to interventricular delay optimization of cardiac resynchronization therapy may arise from differences in how atrioventricular delay is kept constant. Europace. 2015 Apr 7.

  58. Whinnett ZI, Davies JER, Willson K, Manisty CH, Chow AW, Foale RA, et al. Haemodynamic effects of changes in atrioventricular and interventricular delay in cardiac resynchronisation therapy show a consistent pattern: analysis of shape, magnitude and relative importance of atrioventricular and interventricular delay. Heart. 2006;92(11):1628–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Steffel J, Milosevic G, Hurlimann A, Krasniqi N, Namdar M, Ruschitzka F, et al. Characteristics and long-term outcome of echocardiographic super-responders to cardiac resynchronisation therapy: “real world” experience from a single tertiary care centre. Heart. 2011;97(20):1668–74.

    Article  PubMed  Google Scholar 

  60. Ellenbogen KA, Gold MR, Meyer TE, Fernandez Lozano I, Mittal S, Waggoner AD, et al. Primary results from the SmartDelay determined AV optimization: a randomized trial comparing empirical, echocardiography- guided, and algorithmic atrioventricular delay programming in cardiac resynchronization therapy. Circulation. 2010;122(25):2660–8.

  61. Linde C, Abraham WT, Gold MR, Sutton MSJ, Ghio S, Daubert C. Randomized trial of cardiac resynchronization in mildly symptomatic heart failure patients and in asymptomatic patients with left ventricular dysfunction and previous heart failure symptoms. J Am Coll Cardiol. 2008;52(23):1834–43.

    Article  PubMed  Google Scholar 

  62. Martin DO, Lemke B, Birnie D, Krum H, Lee KLF, Aonuma K, et al. Investigation of a novel algorithm for synchronized left-ventricular pacing and ambulatory optimization of cardiac resynchronization therapy: results of the adaptive CRT trial. Heart Rhythm. 2012;9(11):1807–1814.e1.

    Article  PubMed  Google Scholar 

  63. Martin DO, Lemke B, Aonuma K. Clinical outcomes with adaptive cardiac resynchronization therapy: long-term outcomes of the adaptive CRT trial. 2013.

  64. Stavrakis S, Lazzara R, Thadani U. The benefit of cardiac resynchronization therapy and QRS duration: a meta-analysis. J Cardiovasc Electrophysiol. 2012;23(2):163–8.

    Article  PubMed  Google Scholar 

  65. Pabari PA, Willson K, Stegemann B, van Geldorp IE, Kyriacou A, Moraldo M, et al. When is an optimization not an optimization? Evaluation of clinical implications of information content (signal-to-noise ratio) in optimization of cardiac resynchronization therapy, and how to measure and maximize it. Heart Fail Rev. 2011;16(3):277–90.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Sipahi I, Chou JC, Hyden M, Rowland DY, Simon DI, Fang JC. Effect of QRS morphology on clinical event reduction with cardiac resynchronization therapy: meta-analysis of randomized controlled trials. Am Heart J. 2012; 163(2):260-7

  67. Nijjer SS, Pabari PA, Stegemann B, Palmieri V, Leyva F, Linde C, et al. The limit of plausibility for predictors of response: application to biventricular pacing. JCMG. 2012;5(10):1046–65.

    Google Scholar 

  68. van Deursen CJM, Blaauw Y, Witjens MI, Debie L, Wecke L, Crijns HJGM, et al. The value of the 12-lead ECG for evaluation and optimization of cardiac resynchronization therapy in daily clinical practice. J Electrocardiol. 2014;47(2):202–11.

    Article  PubMed  Google Scholar 

  69. Kass DA, Chen CH, Curry C, Talbot M, Berger R, Fetics B, et al. Improved left ventricular mechanics from acute VDD pacing in patients with dilated cardiomyopathy and ventricular conduction delay. Circulation. 1999;99(12):1567–73.

    Article  CAS  PubMed  Google Scholar 

  70. Liang Y, Pan W, Su Y, Ge J. Meta-analysis of randomized controlled trials comparing isolated left ventricular and biventricular pacing in patients with chronic heart failure. Am J Cardiol. 2011;108(8):1160–5.

    Article  PubMed  Google Scholar 

  71. Dell'Orto S, Valli P, Greco EM. Sensors for rate responsive pacing. Indian Pacing Electrophysiol J. 2004;4(3):137–45.

    PubMed Central  PubMed  Google Scholar 

  72. Zareba W, Klein H, Cygankiewicz I, Hall WJ, McNitt S, Brown M, et al. Effectiveness of cardiac resynchronization therapy by QRS morphology in the multicenter automatic defibrillator implantation trial-cardiac resynchronization therapy (MADIT-CRT). Circulation. 2011;123(10):1061–72.

    Article  PubMed  Google Scholar 

  73. Dodge HT, Grant RP. Mechanisms of QRS complex prolongation in man: left ventricular conduction disturbances. The American Journal of Medicine. 1956.

  74. Mullens W, Kepa J, De Vusser P, Vercammen J, Rivero-Ayerza M, Wagner P, et al. Importance of adjunctive heart failure optimization immediately after implantation to improve long-term outcomes with cardiac resynchronization therapy. Am J Cardiol. 2011;108(3):409–15.

    Article  PubMed  Google Scholar 

  75. DeCicco AE, Finkel JB, Greenspon AJ, Frisch DR. Clinical significance of atrial fibrillation detected by cardiac implantable electronic devices. Heart Rhythm Elsevier. 2014;11(4):719–24.

    Article  Google Scholar 

  76. Hoppe UC, Casares JM, Eiskjaer H, Hagemann A, Cleland JGF, Freemantle N, et al. Effect of cardiac resynchronization on the incidence of atrial fibrillation in patients with severe heart failure. Circulation. 2006;114(1):18–25.

    Article  PubMed  Google Scholar 

  77. Leclercq C, Walker S, Linde C, Clementy J, Marshall AJ, Ritter P, et al. Comparative effects of permanent biventricular and right-univentricular pacing in heart failure patients with chronic atrial fibrillation. Eur Heart J. 2002;23(22):1780–7.

    Article  CAS  PubMed  Google Scholar 

  78. Healey JS, Hohnloser SH, Exner DV, Birnie DH, Parkash R, Connolly SJ, et al. Cardiac resynchronization therapy in patients with permanent atrial fibrillation: results from the Resynchronization for Ambulatory Heart Failure Trial (RAFT). Circ: Heart Failure. 2012;5(5):566–70.

    CAS  PubMed  Google Scholar 

  79. Ganesan AN, Brooks AG, Roberts-Thomson KC, Lau DH, Kalman JM, Sanders P. Role of AV nodal ablation in cardiac resynchronization in patients with coexistent atrial fibrillation and heart failure: a systematic review. J Am Coll Cardiol. 2012;59(8):719–26.

    Article  PubMed  Google Scholar 

  80. Gasparini M, Leclercq C, Lunati M, Landolina M, Auricchio A, Santini M, et al. Cardiac resynchronization therapy in patients with atrial fibrillation. The CERTIFY Study (Cardiac Resynchronization Therapy in Atrial Fibrillation Patients Multinational Registry). JACC: Heart Failure. 2013;1(6):500–7.

    PubMed  Google Scholar 

  81. Himmel F, Reppel M, Mortensen K, Schunkert H, Bode F. A strategy to achieve CRT response in permanent atrial fibrillation without obligatory atrioventricular node ablation. Pacing Clin Electrophysiol. 2012;35(8):943–7.

    Article  PubMed  Google Scholar 

  82. Khan MN, Jaïs P, Cummings J, Di Biase L, Sanders P, Martin DO, et al. Pulmonary-vein isolation for atrial fibrillation in patients with heart failure. N Engl J Med. 2008;359(17):1778–85.

    Article  CAS  PubMed  Google Scholar 

  83. Hunter RJ, Berriman TJ, Diab I, Kamdar R, Richmond L, Baker V, et al. A randomized controlled trial of catheter ablation versus medical treatment of atrial fibrillation in heart failure (The CAMTAF trial). Circ: Arrhythmia Electrophysiol. 2014;7(1):31–8.

    CAS  Google Scholar 

  84. Jones DG, Haldar SK, Hussain W, Sharma R, Francis DP, Rahman-Haley SL, et al. A randomized trial to assess catheter ablation versus rate control in the management of persistent atrial fibrillation in heart failure. J Am Coll Cardiol. 2013;61(18):1894–903.

    Article  PubMed  Google Scholar 

  85. Marrouche NF, Brachmann J. Catheter ablation versus standard conventional treatment in patients with left ventricular dysfunction and atrial fibrillation (CASTLE-AF)—study design. Pacing Clin Electrophysiol. 2009;32(8):987–94.

    Article  PubMed  Google Scholar 

  86. Bristow MR, Saxon LA, Boehmer J, Krueger S, Kass DA, De Marco T, et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med. 2004;350(21):2140–50.

    Article  CAS  PubMed  Google Scholar 

  87. Scott PA, Silberbauer J, McDonagh TA, Murgatroyd FD. Impact of prolonged implantable cardioverter-defibrillator arrhythmia detection times on outcomes: a meta-analysis. Heart Rhythm. 2014;1–8.

  88. Cleland JGF, Buga L. Device therapy: defibrillators-a shocking therapy for cardiomyopathy? Nat Rev Cardiol. 2010;7(2):69–70.

    Article  PubMed  Google Scholar 

  89. Whellan DJ, Ousdigian KT, Al-Khatib SM, Pu W, Sarkar S, Porter CB, et al. Combined heart failure device diagnostics identify patients at higher risk of subsequent heart failure hospitalizations: results from PARTNERS HF (Program to Access and Review Trending Information and Evaluate Correlation to Symptoms in Patients with Heart Failure) study. J Am Coll Cardiol. 2010;55(17):1803–10.

    Article  PubMed  Google Scholar 

  90. Boehmer J, Averina V, Thakur P, Zhang Y, Sweeney R, Thompson J. Device-based sensors in the MultiSENSE study: a preliminary view. J Card Fail. 2012;18(S):S18.

    Article  Google Scholar 

  91. De Simone A, Leoni L, Luzi M, Amellone C, Stabile G, La Rocca V, et al. Remote monitoring improves outcome after ICD implantation: the clinical efficacy in the management of heart failure (EFFECT) study. Europace. 2015.

  92. Hindricks G, Taborsky M, Glikson M, Heinrich U, Schumacher B, Katz A, et al. Implant-based multiparameter telemonitoring of patients with heart failure (IN-TIME): a randomised controlled trial. Lancet. 2014;384(9943):583–90.

    Article  PubMed  Google Scholar 

  93. van Veldhuisen DJ, Braunschweig F, Conraads V. Intrathoracic impedance monitoring, audible patient alerts, and outcome in patients with heart failure. Circulation. 2011.

  94. Abraham WT, Compton S, Haas G, Foreman B, Canby RC, Fishel R, et al. Intrathoracic impedance vs daily weight monitoring for predicting worsening heart failure events: results of the Fluid Accumulation Status Trial (FAST). Congest Heart Fail. 2011;17(2):51–5.

    Article  PubMed  Google Scholar 

  95. Heist EK, Herre JM, Binkley PF, Van Bakel AB, Porterfield JG, Porterfield LM, et al. Analysis of different device-based intrathoracic impedance vectors for detection of heart failure events (from the Detect Fluid Early from Intrathoracic Impedance Monitoring Study). Am J Cardiol. 2014;114(8):1249–56.

    Article  PubMed  Google Scholar 

  96. Brugada J, Brachmann J, Delnoy P-P, Padeletti L, Reynolds D, Ritter P, et al. Automatic optimization of cardiac resynchronization therapy using SonR—rationale and design of the clinical trial of the SonRtip Lead and Automatic AV-VV optimization algorithm in the paradym RF SonR CRT-D (RESPOND CRT) trial. Am Heart J. 2014;167(4):429–36.

    Article  PubMed  Google Scholar 

  97. Goetze S, Zhang Y, An Q, Averina V, Lambiase P, Schilling R, et al. Ambulatory respiratory rate trends identify patients at higher risk of worsening heart failure in implantable cardioverter defibrillator and biventricular device recipients: a novel ambulatory parameter to optimize heart failure management. J Interv Card Electrophysiol. 2015;43(1):21–9.

    Article  PubMed Central  PubMed  Google Scholar 

  98. Defaye P, dela Cruz I, Martí-Almor J, Villuendas R, Bru P, Sénéchal J, et al. A pacemaker transthoracic impedance sensor with an advanced algorithm to identify severe sleep apnea: the DREAM European study. Heart Rhythm. 2014;11(5):842–8.

    Article  PubMed  Google Scholar 

  99. Crossley GH, Boyle A, Vitense H, Chang Y, Mead RH, Investigators C. The CONNECT (Clinical Evaluation of Remote Notification to Reduce Time to Clinical Decision) trial. J Am Coll Cardiol. 2011;57(10):1181–9.

    Article  PubMed  Google Scholar 

  100. Auricchio A, Klein H, Tockman B, Sack S, Stellbrink C, Neuzner J, et al. Transvenous biventricular pacing for heart failure: can the obstacles be overcome? Am J Cardiol. 1999;83(5B):136D–42D.

    Article  CAS  PubMed  Google Scholar 

  101. Gold MR, Auricchio A, Hummel JD, Giudici MC, Ding J, Tockman B, et al. Comparison of stimulation sites within left ventricular veins on the acute hemodynamic effects of cardiac resynchronization therapy. Heart Rhythm. 2005;2(4):376–81.

    Article  PubMed  Google Scholar 

  102. Duckett SG, Ginks M, Shetty AK, Bostock J, Gill JS, Hamid S, et al. Invasive acute hemodynamic response to guide left ventricular lead implantation predicts chronic remodeling in patients undergoing cardiac resynchronization therapy. J Am Coll Cardiol. 2011;58(11):1128–36.

    Article  PubMed  Google Scholar 

  103. Bogaard MD, Houthuizen P, Bracke FA, Doevendans PA, Prinzen FW, Meine M, et al. Baseline left ventricular dP/dtmax rather than the acute improvement in dP/dtmax predicts clinical outcome in patients with cardiac resynchronization therapy. Eur J Heart Fail. 2014;13(10):1126–32.

    Article  Google Scholar 

  104. de Roest GJ, Allaart CP, Kleijn SA, Delnoy PPHM, Wu L, Hendriks ML, et al. Prediction of long-term outcome of cardiac resynchronization therapy by acute pressure-volume loop measurements. Eur J Heart Fail. 2014;15(3):299–307.

    Article  Google Scholar 

  105. Whinnett ZI, Francis DP, Denis A, Willson K, Pascale P, van Geldorp I, et al. Comparison of different invasive hemodynamic methods for AV delay optimization in patients with cardiac resynchronization therapy: implications for clinical trial design and clinical practice. International Journal of Cardiology. Int J Cardiol. 2013;168(3):2228–37.

  106. Gold MR, Birgersdotter-Green U, Singh JP, Ellenbogen KA, Yu Y, Meyer TE, et al. The relationship between ventricular electrical delay and left ventricular remodelling with cardiac resynchronization therapy. Eur Heart J. 2011;32(20):2516–24.

    Article  PubMed Central  PubMed  Google Scholar 

  107. Thibault B, Dubuc M, Khairy P, Guerra PG, Macle L, Rivard L, et al. Acute haemodynamic comparison of multisite and biventricular pacing with a quadripolar left ventricular lead. Europace. 2013;15(7):984–91.

    Article  PubMed  Google Scholar 

  108. Spragg DD, Dong J, Fetics BJ, Helm R, Marine JE, Cheng A, et al. Optimal left ventricular endocardial pacing sites for cardiac resynchronization therapy in patients with ischemic cardiomyopathy. J Am Coll Cardiol. 2010;56(10):774–81.

    Article  PubMed  Google Scholar 

  109. Pappone C, Ćalović Ž, Vicedomini G, Cuko A, McSpadden LC, Ryu K, et al. Multipoint left ventricular pacing improves acute hemodynamic response assessed with pressure-volume loops in cardiac resynchronization therapy patients. Heart Rhythm. 2014;11(3):394–401.

    Article  PubMed  Google Scholar 

  110. Asbach S, Hartmann M, Wengenmayer T, Graf E, Bode C, Biermann J. Vector selection of a quadripolar left ventricular pacing lead affects acute hemodynamic response to cardiac resynchronization therapy: a randomized cross-over trial. Sovari AA, editor. PLoS One. 2013;8(6), e67235.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Ginks MR, Lambiase PD, Duckett SG, Bostock J, Chinchapatnam P, Rhode K, et al. A simultaneous X-Ray/MRI and noncontact mapping study of the acute hemodynamic effect of left ventricular endocardial and epicardial cardiac resynchronization therapy in humans. Circ: Heart Failure. 2011;4(2):170–9.

    PubMed  Google Scholar 

  112. Yoshida K, Seo Y, Yamasaki H, Tanoue K, Murakoshi N, Ishizu T, et al. Effect of triangle ventricular pacing on haemodynamics and dyssynchrony in patients with advanced heart failure: a comparison study with conventional bi-ventricular pacing therapy. Eur Heart J. 2007;28(21):2610–9.

    Article  PubMed  Google Scholar 

  113. Lambiase PD, Rinaldi A, Hauck J, Mobb M, Elliott D, Mohammad S, et al. Non-contact left ventricular endocardial mapping in cardiac resynchronisation therapy. Heart. 2004;90(1):44–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  114. Pappone C, Rosanio S, Oreto G, Tocchi M, Gulletta S, Salvati A, et al. Cardiac pacing in heart failure patients with left bundle branch block: impact of pacing site for optimizing left ventricular resynchronization. Ital Heart J. 2000;1(7):464–9.

    CAS  PubMed  Google Scholar 

  115. Padeletti L, Pieragnoli P, Ricciardi G, Perrotta L, Grifoni G, Porciani MC, et al. Acute hemodynamic effect of left ventricular endocardial pacing in cardiac resynchronization therapy: assessment by pressure-volume loops. Circ: Arrhythm Electrophysiol. 2012;5(3):460–7.

    Google Scholar 

  116. Fung JW-H, Yu CM, Yip G, Zhang Y, Chan H, Kum C-C, et al. Variable left ventricular activation pattern in patients with heart failure and left bundle branch block. Heart. 2004;90(1):17–9.

    Article  PubMed Central  PubMed  Google Scholar 

  117. Leclercq C, Gadler F, Kranig W, Ellery S, Gras D, Lazarus A, et al. A randomized comparison of triple-site versus dual-site ventricular stimulation in patients with congestive heart failure. J Am Coll Cardiol. 2008;51(15):1455–62.

    Article  PubMed  Google Scholar 

  118. Saba S, Marek J, Schwartzman D, Jain S, Adelstein E, White P, et al. Echocardiography-guided left ventricular lead placement for cardiac resynchronization therapy: results of the Speckle Tracking Assisted Resynchronization Therapy for Electrode Region trial. Circ: Heart Failure. 2013;6(3):427–34.

    CAS  PubMed  Google Scholar 

  119. Lenarczyk R, Kowalski O, Kukulski T, Szulik M, Pruszkowska-Skrzep P, Zielinska T, et al. Triple-site biventricular pacing in patients undergoing cardiac resynchronization therapy: a feasibility study. Eurospace. 2007;9(9):762–7.

    Article  Google Scholar 

  120. Garrigue S, Jaïs P, Espil G, Labeque JN, Hocini M, Shah DC, et al. Comparison of chronic biventricular pacing between epicardial and endocardial left ventricular stimulation using Doppler tissue imaging in patients with heart failure. Am J Cardiol. 2001;88(8):858–62.

    Article  CAS  PubMed  Google Scholar 

  121. Fish JM, Brugada J, Antzelevitch C. Potential proarrhythmic effects of biventricular pacing. J Am Coll Cardiol. 2005;46(12):2340–7.

    Article  PubMed Central  PubMed  Google Scholar 

  122. Rademakers LM, van Gelder BM, Scheffer MG, Bracke FA. Mid-term follow up of thromboembolic complications in left ventricular endocardial cardiac resynchronization therapy. Heart Rhythm. 2014;11(4):609–13.

  123. Auricchio A, Delnoy P-P, Regoli F, Seifert M, Markou T, Butter C. First-in-man implantation of leadless ultrasound-based cardiac stimulation pacing system: novel endocardial left ventricular resynchronization therapy in heart failure patients. Europace. 2013;15(8):1191–7.

    Article  PubMed  Google Scholar 

  124. Delgado V, Bax JJ. Assessment of systolic dyssynchrony for cardiac resynchronization therapy is clinically useful. Circulation. 2011;123(6):640–55.

    Article  PubMed  Google Scholar 

  125. Mak GS, Truong QA. Cardiac CT: imaging of and through cardiac devices. Curr Cardiovasc Imaging Rep. 2012;5(5):328–36.

    Article  PubMed Central  PubMed  Google Scholar 

  126. Sperzel J, Burri H, Gras D, Tjong FVY, Knops RE, Hindricks G, et al. State of the art of leadless pacing. Europace. 2015 May 29.

  127. Mlynarski R, Sosnowski M, Wlodyka A, Kargul W, Tendera M. A user-friendly method of cardiac venous system visualization in 64-slice computed tomography. Pacing Clin Electrophysiol. 2009;32(3):323–9.

    Article  PubMed  Google Scholar 

  128. Behar JM, Bostock J, Zhu Li AP, Chin HMS, Jubb S, Lent E, et al. Cardiac resynchronization therapy delivered via a multipolar left ventricular lead is associated with reduced mortality and elimination of phrenic nerve stimulation: long-term follow-up from a multicenter registry. J Cardiovasc Electrophysiol. 2015 Mar 5.

Download references

Compliance with Ethics Guidelines

This review relies on research published in reputable journals, which we assume publish only ethically responsible research.

Conflict of Interest

C. Butcher reports grant support from Boston Scientific and another support from Boston Scientific and Medtronic. Y. Mareev and T. Wong declare that they have no conflict of interest. V. Markides reports institutional support from St. Jude and Boston Scientific. M. Mason reports other support from Medtronic, Boston Scientific and St. Jude Medical. J. G. F. Cleland reports personal fees and non-financial support from Medtronic, non-financial support from Boston Scientific, and personal fees from Biotronik, Sorin and St. Jude.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. F. Cleland.

Additional information

This article is part of the Topical Collection on Heart Failure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butcher, C., Mareev, Y., Markides, V. et al. Cardiac Resynchronization Therapy Update: Evolving Indications, Expanding Benefit?. Curr Cardiol Rep 17, 90 (2015). https://doi.org/10.1007/s11886-015-0641-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-015-0641-5

Keywords

Navigation