Skip to main content
Log in

Chronic Winds Reduce Tropical Forest Structural Complexity Regardless of Climate, Topography, or Forest Age

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Tropical forests are the world’s most structurally complex ecosystems, providing key functions like biomass accumulation, which is linked to this complexity. Tropical forests are also exposed to chronic, non-severe winds, yet their effect on forest structural complexity is understudied. Here we examine drivers of forest structural complexity in Puerto Rico with a particular focus on chronic wind exposure. We used airborne light detection and ranging data collected in 2016 to quantify canopy height and rugosity (variation in height) in ~ 20,000, 0.28 ha forested sites stratified by forest age. We used random forest models to analyze variation in canopy height and rugosity as a function of chronic wind exposure, forest age, mean annual precipitation, elevation, slope (in degrees), soil type, soil available water storage, and exposure to a previous hurricane. Canopy height was driven by precipitation, forest age, and chronic wind exposure, decreasing by 2.12 m (16%) on average in wind-exposed forests across all forest ages. Canopy height increased by 4.0 m (41%) on average in forests aged 25–66 years, and by 4.0 m between sites with 1000 and 2000 mm y−1 precipitation. Canopy rugosity was driven by canopy height, precipitation, forest age, and elevation, increasing log-linearly with canopy height and precipitation, decreasing with elevation, and was highest in younger forests. Chronic wind exposure did not drive variation in canopy rugosity. Our results suggest that chronic wind exposure plays an integral role in limiting canopy height, potentially reducing aboveground carbon accumulation in older tropical forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Data Availability

Data for analyses and figures can be found at Dryad: https://datadryad.org/stash/share/DjL6uLjBN-jvHrPqfXRy5_3xjVHhHvPsFk8Ytqo4GcM. No novel code was used for this manuscript.

References

  • Abelleira Martínez OJ, Rodríguez MA, Rosario I, Soto N, López A, Lugo AE. 2009. Structure and species composition of novel forests dominated by an introduced species in northcentral Puerto Rico. New for 39:1.

    Article  Google Scholar 

  • Aide TM, Zimmerman JK, Rosario M, Marcano H. 1996. Forest recovery in abandoned cattle pastures along an elevational gradient in northeastern Puerto Rico. Biotropica 28:537–548.

    Article  Google Scholar 

  • de Almeida DRA, Stark SC, Shao G, Schietti J, Nelson BW, Silva CA, Gorgens EB, Valbuena R, de Papa D, Brancalion PHS. 2019. Optimizing the remote detection of tropical rainforest structure with airborne lidar: leaf area profile sensitivity to pulse density and spatial sampling. Remote Sens 11:92.

    Article  Google Scholar 

  • Atkins JW, Bohrer G, Fahey RT, Hardiman BS, Morin TH, Stovall AEL, Zimmerman N, Gough CM. 2018a. Quantifying vegetation and canopy structural complexity from terrestrial LiDAR data using the forestr R package. Methods Ecol Evol 9:2057–2066.

    Article  Google Scholar 

  • Atkins JW, Bond-Lamberty B, Fahey RT, Haber LT, Stuart-Haëntjens E, Hardiman BS, LaRue E, McNeil BE, Orwig DA, Stovall AEL, Tallant JM, Walter JA, Gough CM. 2020. Application of multidimensional structural characterization to detect and describe moderate forest disturbance. Ecosphere 11:e03156.

    Article  Google Scholar 

  • Atkins JW, Fahey RT, Hardiman BS, Gough CM. 2018b. Forest canopy structural complexity and light absorption relationships at the subcontinental scale. J Geophys Res Biogeosci 123:1387–1405.

    Article  Google Scholar 

  • Atkins JW, Walter JA, Stovall AEL, Fahey RT, Gough CM. 2022. Power law scaling relationships link canopy structural complexity and height across forest types. Funct Ecol 36:713–726.

    Article  Google Scholar 

  • Batke SP, Jocque M, Kelly DL. 2014. Modelling hurricane exposure and wind speed on a mesoclimate scale: a case study from Cusuco NP, Honduras. PLOS One 9:e91306.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bauweraerts I, Ameye M, Wertin TM, McGuire MA, Teskey RO, Steppe K. 2014. Water availability is the decisive factor for the growth of two tree species in the occurrence of consecutive heat waves. Agric for Meteorol 189–190:19–29.

    Article  Google Scholar 

  • Benkeblia N. 2021. Physiological and biochemical response of tropical fruits to hypoxia/anoxia. Front Plant Sci 12:670803.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bivand R, Altman M, Anselin L, Assunção R, Berke O, Blanchet FG, Carvalho M, Christensen B, Chun Y, Dormann C, Dray S, Dunnington D, Gómez-Rubio V, Krainski E, Legendre P, Lewin-Koh N, Li A, Millo G, Mueller W, Ono H, Parry J, Peres-Neto P, Piras G, Reder M, Sauer J, Tiefelsdorf M, Westerholt R, Wolf L, Yu D. 2022. spdep: Spatial Dependence: Weighting Schemes, Statistics.

  • Bonnesoeur V, Constant T, Moulia B, Fournier M. 2016. Forest trees filter chronic wind-signals to acclimate to high winds. New Phytologist 210:850–860.

    Article  PubMed  Google Scholar 

  • Boose ER, Foster DR, Fluet M. 1994. Hurricane impacts to tropical and temperate forest landscapes. Ecol Monographs 64:369–400.

    Article  Google Scholar 

  • Boose ER, Serrano MI, Foster DR. 2004. Landscape and regional impacts of hurricanes in Puerto Rico. Ecol Monographs 74:335–352.

    Article  Google Scholar 

  • Brandeis T, Turner J. 2013. Puerto Rico’s forests, 2009. Resour Bull SRS-RB-191 Asheville, NC US Department of Agriculture Forest Service, Southern Research Station 85 p 191:1–85.

  • Breiman L. 2001. Random forests. Mach Learn 45:5–32.

    Article  Google Scholar 

  • Canham CD, Thompson J, Zimmerman JK, Uriarte M. 2010. Variation in susceptibility to hurricane damage as a function of Storm intensity in Puerto Rican tree species. Biotropica 42:87–94.

    Article  Google Scholar 

  • Carswell WJ Jr. 2016. The 3D elevation program: summary for Puerto Rico. Reston, VA: U.S. Geological Survey.

    Google Scholar 

  • Coddington CPJ, Cooper WJ, Mokross K, Luther DA. 2023. Forest structure predicts species richness and functional diversity in Amazonian mixed-species bird flocks. Biotropica 55:467–479.

    Article  Google Scholar 

  • Connell JH. 1978. Diversity in tropical rain forests and coral reefs. Science 199:1302–1310.

    Article  CAS  PubMed  Google Scholar 

  • Cook BI, Mankin JS, Marvel K, Williams AP, Smerdon JE, Anchukaitis KJ. 2020. Twenty-first century drought projections in the CMIP6 forcing scenarios. Earth’s Future 8:e2019EF001461.

    Article  Google Scholar 

  • Coomes DA, Šafka D, Shepherd J, Dalponte M, Holdaway R. 2018. Airborne laser scanning of natural forests in New Zealand reveals the influences of wind on forest carbon. For Ecosyst 5:10.

    Article  Google Scholar 

  • Crk T, Uriarte M, Corsi F, Flynn D. 2009. Forest recovery in a tropical landscape: what is the relative importance of biophysical, socioeconomic, and landscape variables? Landscape Ecol 24:629–642.

    Article  Google Scholar 

  • Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S. 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46.

    Article  Google Scholar 

  • Ehbrecht M, Seidel D, Annighöfer P, Kreft H, Köhler M, Zemp DC, Puettmann K, Nilus R, Babweteera F, Willim K, Stiers M, Soto D, Boehmer HJ, Fisichelli N, Burnett M, Juday G, Stephens SL, Ammer C. 2021. Global patterns and climatic controls of forest structural complexity. Nat Commun 12:519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrlinger J. 2016. ggRandomForests: Visually Exploring Random Forests.

  • Eloy C, Fournier M, Lacointe A, Moulia B. 2017. Wind loads and competition for light sculpt trees into self-similar structures. Nat Commun 8:1014.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fahey RT, Atkins JW, Gough CM, Hardiman BS, Nave LE, Tallant JM, Nadehoffer KJ, Vogel C, Scheuermann CM, Stuart-Haëntjens E, Haber LT, Fotis AT, Ricart R, Curtis PS. 2019. Defining a spectrum of integrative trait-based vegetation canopy structural types. Ecol Lett 22:2049–2059.

    Article  PubMed  Google Scholar 

  • Fahey RT, Fotis AT, Woods KD. 2015. Quantifying canopy complexity and effects on productivity and resilience in late-successional hemlock-hardwood forests. Ecol Appl A Publ Ecol Soc Am 25:834–847.

    Google Scholar 

  • Fokkema M, Christoffersen B. 2021. pre: Prediction Rule Ensembles.

  • Fotis AT, Morin TH, Fahey RT, Hardiman BS, Bohrer G, Curtis PS. 2018. Forest structure in space and time: biotic and abiotic determinants of canopy complexity and their effects on net primary productivity. Agric for Meteorol 250–251:181–191.

    Article  Google Scholar 

  • Friedman JH. 2001. Greedy function approximation: a gradient boosting machine. Ann Stat 29:1189–1232.

    Article  Google Scholar 

  • Friedman JH, Popescu BE. 2008. Predictive learning via rule ensembles. Ann Appl Stat 2:916–954.

    Article  Google Scholar 

  • Gardiner B, Berry P, Moulia B. 2016. Review: wind impacts on plant growth, mechanics and damage. Plant Sci 245:94–118.

    Article  CAS  PubMed  Google Scholar 

  • González G. 2017. Luquillo Mountains meteorological and ceilometer data.

  • Gorgens EB, Nunes MH, Jackson T, Coomes D, Keller M, Reis CR, Valbuena R, Rosette J, de Almeida DRA, Gimenez B, Cantinho R, Motta AZ, Assis M, de PSouza Pereira FR, Spanner G, Higuchi N, Ometto JP. 2021. Resource availability and disturbance shape maximum tree height across the Amazon. Glob Change Biol 27:177–189.

    Article  CAS  Google Scholar 

  • Gough CM, Atkins JW, Fahey RT, Hardiman BS. 2019. High rates of primary production in structurally complex forests. Ecology 100:e02864.

    Article  PubMed  Google Scholar 

  • Gough CM, Atkins JW, Fahey RT, Hardiman BS, LaRue EA. 2020. Community and structural constraints on the complexity of eastern North American forests. Glob Ecol Biogeogr 29:2107–2118.

    Article  Google Scholar 

  • Gould WA, Alarcon C, Fevold B, Jimenez ME, Martinuzzi S, Potts G, Quinones M, Solórzano M, Ventosa E. 2008. The Puerto Rico Gap Analysis Project Volume 1: land cover, vertebrate species distributions, and land stewardship. Gen Tech Rep IITF-39 1.

  • Haber LT, Fahey RT, Wales SB, Pascuas NC, Currie WS, Hardiman BS, Gough CM. 2020. Forest structure, diversity, and primary production in relation to disturbance severity. Ecol Evol 10:4419–4430.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hall J, Muscarella R, Quebbeman A, Arellano G, Thompson J, Zimmerman JK, Uriarte M. 2020. Hurricane-induced rainfall is a stronger predictor of tropical forest damage in Puerto Rico than maximum wind speeds. Sci Rep 10:4318.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG. 2013. High-resolution global maps of 21st-century forest cover change. Science 342:850–853.

    Article  CAS  PubMed  Google Scholar 

  • Hardiman BS, Gough CM, Halperin A, Hofmeister KL, Nave LE, Bohrer G, Curtis PS. 2013. Maintaining high rates of carbon storage in old forests: a mechanism linking canopy structure to forest function. For Ecol Manag 298:111–119.

    Article  Google Scholar 

  • Hardiman BS, LaRue EA, Atkins JW, Fahey RT, Wagner FW, Gough CM. 2018. Spatial variation in canopy structure across forest landscapes. Forests 9:474.

    Article  Google Scholar 

  • Heartsill Scalley T, Scatena FN, Lugo AE, Moya S, Ruiz CRE. 2010. Changes in structure, composition, and nutrients during 15 Yr of hurricane-induced succession in a subtropical wet forest in Puerto Rico. Biotropica 42:455–463.

    Article  Google Scholar 

  • Helmer E, Ramos O, López TDM, Quinones M, Diaz W. 2002. Mapping the forest type and land cover of Puerto Rico, a component of the caribbean biodiversity hotspot. Caribb J Sci 38(3–4):165–183.

    Google Scholar 

  • Helmer EH, Brandeis TJ, Lugo AE, Kennaway T. 2008. Factors influencing spatial pattern in tropical forest clearance and stand age: implications for carbon storage and species diversity. J Geophys Res Biogeosci. https://doi.org/10.1029/2007JG000568.

    Article  Google Scholar 

  • Herzmann D. 2022. Iowa Environmental Mesonet.

  • Hijmans RJ, Etten J van, Sumner M, Cheng J, Baston D, Bevan A, Bivand R, Busetto L, Canty M, Fasoli B, Forrest D, Ghosh A, Golicher D, Gray J, Greenberg JA, Hiemstra P, Hingee K, Geosciences I for MA, Karney C, Mattiuzzi M, Mosher S, Naimi B, Nowosad J, Pebesma E, Lamigueiro OP, Racine EB, Rowlingson B, Shortridge A, Venables B, Wueest R. 2021. raster: Geographic Data Analysis and Modeling.

  • Hogan JA, Zimmerman JK, Thompson J, Nytch CJ, Uriarte M. 2016. The interaction of land-use legacies and hurricane disturbance in subtropical wet forest: twenty-one years of change. Ecosphere 7:e01405.

    Article  Google Scholar 

  • Hogan JA, Zimmerman JK, Thompson J, Uriarte M, Swenson NG, Condit R, Hubbell S, Johnson DJ, Sun IF, Chang-Yang C-H, Su S-H, Ong P, Rodriguez L, Monoy CC, Yap S, Davies SJ. 2018. The frequency of cyclonic wind storms shapes tropical forest dynamism and functional trait dispersion. Forests 9:404.

    Article  Google Scholar 

  • Ibañez T, Keppel G, Menkes C, Gillespie TW, Lengaigne M, Mangeas M, Rivas-Torres G, Birnbaum P. 2019. Globally consistent impact of tropical cyclones on the structure of tropical and subtropical forests. J Ecol 107:279–292.

    Article  Google Scholar 

  • Ishii HT, Tanabe S, Hiura T. 2004. Exploring the relationships among canopy structure, stand productivity, and biodiversity of temperate forest ecosystems. For Sci 50:342–355.

    Google Scholar 

  • Ishwaran H, Kogalur UB. 2022. randomForestSRC: Fast Unified Random Forests for Survival, Regression, and Classification (RF-SRC).

  • Jackson T, Shenkin A, Kalyan B, Zionts J, Calders K, Origo N, Disney M, Burt A, Raumonen P, Malhi Y. 2019. A new architectural perspective on wind damage in a natural forest. Front for Glob Change 1:13.

    Article  Google Scholar 

  • Johnstone JF, Allen CD, Franklin JF, Frelich LE, Harvey BJ, Higuera PE, Mack MC, Meentemeyer RK, Metz MR, Perry GL, Schoennagel T, Turner MG. 2016. Changing disturbance regimes, ecological memory, and forest resilience. Front Ecol Environ 14:369–378.

    Article  Google Scholar 

  • Jucker T. 2022. Deciphering the fingerprint of disturbance on the three-dimensional structure of the world’s forests. New Phytologist 233:612–617.

    Article  PubMed  Google Scholar 

  • Jucker T, Asner GP, Dalponte M, Brodrick PG, Philipson CD, Vaughn NR, Teh YA, Brelsford C, Burslem DFRP, Deere NJ, Ewers RM, Kvasnica J, Lewis SL, Malhi Y, Milne S, Nilus R, Pfeifer M, Phillips OL, Qie L, Renneboog N, Reynolds G, Riutta T, Struebig MJ, Svátek M, Turner EC, Coomes DA. 2018a. Estimating aboveground carbon density and its uncertainty in Borneo’s structurally complex tropical forests using airborne laser scanning. Biogeosciences 15:3811–3830.

    Article  Google Scholar 

  • Jucker T, Bongalov B, Burslem DFRP, Nilus R, Dalponte M, Lewis SL, Phillips OL, Qie L, Coomes DA. 2018b. Topography shapes the structure, composition and function of tropical forest landscapes. Ecol Lett 21:989–1000.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kennaway T, Helmer EH. 2007. The forest types and ages cleared for land development in Puerto Rico. Gisci Remote Sens 44(4):356–382.

    Article  Google Scholar 

  • LaRue EA, Fahey RT, Alveshere BC, Atkins JW, Bhatt P, Buma B, Chen A, Cousins S, Elliott JM, Elmore AJ, Hakkenberg CR, Hardiman BS, Johnson JS, Kashian DM, Koirala A, Papeş M, St Hilaire JB, Surasinghe TD, Zambrano J, Zhai L, Fei S. 2023a. A theoretical framework for the ecological role of three-dimensional structural diversity. Front Ecol Environ 21:4–13.

    Article  Google Scholar 

  • LaRue EA, Knott JA, Domke GM, Chen HY, Guo Q, Hisano M, Oswalt C, Oswalt S, Kong N, Potter KM, Fei S. 2023b. Structural diversity as a reliable and novel predictor for ecosystem productivity. Front Ecol Environ 21:33–39.

    Article  Google Scholar 

  • LaRue EA, Wagner FW, Fei S, Atkins JW, Fahey RT, Gough CM, Hardiman BS. 2020. Compatibility of aerial and terrestrial LiDAR for quantifying forest structural diversity. Remote Sens 12:1407.

    Article  Google Scholar 

  • LAStools. 2022. LAStools.

  • Lin T-C, Hogan JA, Chang C-T. 2020. Tropical cyclone ecology: a scale-link perspective. Trends Ecol Evol 35:594–604.

    Article  PubMed  Google Scholar 

  • Lugo A, Frangi JL. 2016. Long-term response of caribbean palm forests to hurricanes. Caribb Nat 1:157–175.

    Google Scholar 

  • Lugo AE, Helmer E. 2004. Emerging forests on abandoned land: Puerto Rico’s new forests. For Ecol Manag 190:145–161.

    Article  Google Scholar 

  • Malhi Y, Jackson T, Patrick Bentley L, Lau A, Shenkin A, Herold M, Calders K, Bartholomeus H, Disney MI. 2018. New perspectives on the ecology of tree structure and tree communities through terrestrial laser scanning. Interface Focus 8:20170052.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marselis SM, Tang H, Armston J, Abernethy K, Alonso A, Barbier N, Bissiengou P, Jeffery K, Kenfack D, Labrière N, Lee S-K, Lewis SL, Memiaghe H, Poulsen JR, White L, Dubayah R. 2019. Exploring the relation between remotely sensed vertical canopy structure and tree species diversity in Gabon. Environ Res Lett 14:094013.

    Article  Google Scholar 

  • Martin PA, Newton AC, Bullock JM. 2013. Carbon pools recover more quickly than plant biodiversity in tropical secondary forests. Proc R Soc B Biol Sci 280:20132236.

    Article  Google Scholar 

  • Martínez OA, Lugo AE. 2008. Post sugar cane succession in moist alluvial sites in Puerto Rico. In: Myster RW, Ed. Post-agricultural succession in the neotropics, . New York, NY: Springer. pp 73–92.

    Chapter  Google Scholar 

  • Martinuzzi S, Cook BD, Helmer EH, Keller M, Locke DH, Marcano-Vega H, Uriarte M, Morton DC. 2022. Patterns and controls on island-wide aboveground biomass accumulation in second-growth forests of Puerto Rico. Biotropica 54:1146–1159.

    Article  Google Scholar 

  • Molnar C, Schratz P. 2020. iml: Interpretable Machine Learning.

  • Momberg M, Hedding DW, Luoto M, le Roux PC. 2021. Exposing wind stress as a driver of fine-scale variation in plant communities. J Ecol 109:2121–2136.

    Article  Google Scholar 

  • Moore J, Gardiner B, Sellier D. 2018. Tree mechanics and wind loading. In: Geitmann A, Gril J, Eds. Plant biomechanics: from structure to function at multiple scales, . Cham: Springer International Publishing. pp 79–106.

    Chapter  Google Scholar 

  • Moulia B, Combes D. 2004. Thigmomorphogenetic acclimation of plants to moderate winds greatly affects height structure in field-gown alfalfa (Medicago sativa L.), an indeterminate herb. Comp Biochem Physiol Part A Mol Integr Physiol 137:8.

    Google Scholar 

  • Muscarella R, Kolyaie S, Morton DC, Zimmerman JK, Uriarte M. 2020. Effects of topography on tropical forest structure depend on climate context. J Ecol 108:145–159.

    Article  Google Scholar 

  • Nicoll BC, Gardiner BA, Peace AJ. 2008. Improvements in anchorage provided by the acclimation of forest trees to wind stress. For Int J for Res 81:389–398.

    Google Scholar 

  • Niklas KJ. 2016. Tree biomechanics with special reference to tropical trees. In: Goldstein G, Santiago LS, Eds. Tropical tree physiology: adaptations and responses in a changing environment. Tree physiology, . Cham: Springer International Publishing. pp 413–435.

    Chapter  Google Scholar 

  • Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D. 2011. A Large and persistent carbon sink in the world’s forests. Science 333:988–993.

    Article  CAS  PubMed  Google Scholar 

  • Poorter L, Bongers F, Aide TM, Zambrano AMA, Levy PB, Becknell JM, Boukili V, Brancalion PHS, Broadbent EN, Chazdon RL, Craven D, Almeida-Cortez JSD, Cabral GAL, Jong BH, Jozeph D, Denslow JS, Dent DH, DeWalt SJ, Dupuy JM, Durán SM, Espírito-Santo MM, Fandino MC, César RG, Hall JS, Hernandez-Stefanoni JL, Jakovac CC, Junqueira AB, Kennard D, Letcher SG, Licona JC, Lohbeck M, Marín-Spiotta E, Martínez-Ramos M, Massoca P, Meave JA, Mesquita R, Mora F, Munõz R, Muscarella R, Nunes YRF, Ochoa-Gaona S, Oliveira AAD, Orihuela-Belmonte E, Penã-Claros M, Pérez-Garciá EA, Piotto D, Powers JS, Rodríguez-Velázquez J, Romero-Pérez IE, Ruíz J, Saldarriaga JG, Sanchez-Azofeifa A, Schwartz NB, Steininger MK, Swenson NG, Toledo M, Uriarte M, Breugel MV, Wal HVD, Veloso MDM, Vester HFM, Vicentini A, Vieira ICG, Bentos TV, Williamson GB, Rozendaal DMA. 2016. Biomass resilience of Neotropical secondary forests. Nature 530:211–214.

    Article  CAS  PubMed  Google Scholar 

  • Poorter L, Craven D, Jakovac CC, van der Sande MT, Amissah L, Bongers F, Chazdon RL, Farrior CE, Kambach S, Meave JA, Muñoz R, Norden N, Rüger N, van Breugel M, Almeyda Zambrano AM, Amani B, Andrade JL, Brancalion PHS, Broadbent EN, de Foresta H, Dent DH, Derroire G, DeWalt SJ, Dupuy JM, Durán SM, Fantini AC, Finegan B, Hernández-Jaramillo A, Hernández-Stefanoni JL, Hietz P, Junqueira AB, N’dja JK, Letcher SG, Lohbeck M, López-Camacho R, Martínez-Ramos M, Melo FPL, Mora F, Müller SC, N’Guessan AE, Oberleitner F, Ortiz-Malavassi E, Pérez-García EA, Pinho BX, Piotto D, Powers JS, Rodríguez-Buriticá S, Rozendaal DMA, Ruíz J, Tabarelli M, Teixeira HM, de Sá Valadares, Barretto Sampaio E, van der Wal H, Villa PM, Fernandes GW, Santos BA, Aguilar-Cano J, de Almeida-Cortez JS, Alvarez-Davila E, Arreola-Villa F, Balvanera P, Becknell JM, Cabral GAL, Castellanos-Castro C, de Jong BHJ, Nieto JE, Espírito-Santo MM, Fandino MC, García H, García-Villalobos D, Hall JS, Idárraga A, Jiménez-Montoya J, Kennard D, Marín-Spiotta E, Mesquita R, Nunes YRF, Ochoa-Gaona S, Peña-Claros M, Pérez-Cárdenas N, Rodríguez-Velázquez J, Villanueva LS, Schwartz NB, Steininger MK, Veloso MDM, Vester HFM, Vieira ICG, Williamson GB, Zanini K, Hérault B. 2021a. Multidimensional tropical forest recovery. Science 374:1370–1376.

    Article  CAS  PubMed  Google Scholar 

  • Poorter L, Rozendaal DMA, Bongers F, de Almeida JS, Álvarez FS, Andrade JL, Arreola Villa LF, Becknell JM, Bhaskar R, Boukili V, Brancalion PHS, César RG, Chave J, Chazdon RL, Dalla Colletta G, Craven D, de Jong BHJ, Denslow JS, Dent DH, DeWalt SJ, Díaz García E, Dupuy JM, Durán SM, Espírito Santo MM, Fernandes GW, Finegan B, Granda Moser V, Hall JS, Hernández-Stefanoni JL, Jakovac CC, Kennard D, Lebrija-Trejos E, Letcher SG, Lohbeck M, Lopez OR, Marín-Spiotta E, Martínez-Ramos M, Meave JA, Mora F, de Souza Moreno V, Müller SC, Muñoz R, Muscarella R, Nunes YRF, Ochoa-Gaona S, Oliveira RS, Paz H, Sanchez-Azofeifa A, Sanaphre-Villanueva L, Toledo M, Uriarte M, Utrera LP, van Breugel M, van der Sande MT, Veloso MDM, Wright SJ, Zanini KJ, Zimmerman JK, Westoby M. 2021b. Functional recovery of secondary tropical forests. Proc Natl Acad Sci 118:e2003405118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • PRISM Climate Group. 2002. Puerto Rico Project 1963–1995.

  • R Core Team. 2021. R: A language and environment for statistical computing.

  • Reed JC, Bush CA. 2005. Generalized Geologic Map of the United States, Puerto Rico, and the U.S. Virgin Islands.

  • Roussel J-R. 2021. lidR: Airborne LiDAR Data Manipulation and Visualization for Forestry Applications.

  • Soil Survey Staff. 2021. Soil Survey Georgraphic (SSURGO) Database for Puerto Rico.

  • Swanson AC, Weishampel JF. 2019. Scaling lidar-derived rainforest canopy metrics across a Mesoamerican landscape. Int J Remote Sens 40:9181–9207.

    Article  Google Scholar 

  • Technical University of Denmark. 2020. Global Wind Atlas 3.0.

  • Weaver PL, Murphy PG. 1990. Forest structure and productivity in Puerto Rico’s luquillo mountains. Biotropica 22:69–82.

    Article  Google Scholar 

  • Xi W. 2015. Synergistic effects of tropical cyclones on forest ecosystems: a global synthesis. J for Res 26:1–21.

    Article  Google Scholar 

  • Zimmerman JK, Hogan JA, Shiels AB, Bithorn JE, Carmona SM, Brokaw N. 2014. Seven-year responses of trees to experimental hurricane effects in a tropical rainforest, Puerto Rico. For Ecol Manag 332:64–74.

    Article  Google Scholar 

Download references

Acknowledgements

Research was supported by NSF award DEB-1801315 to M.U. and J.K.Z and NSF DEB-1546686 to the Luquillo LTER. RM was supported by grant 2019-03758 from the Swedish Research Council, Vetenskapsrådet. We would like to thank Dr. Thomas Mote for his advice regarding wind data in Puerto Rico. Drs. Ruth Defries, Duncan Menge, and Kevin Griffin offered useful input and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roi Ankori-Karlinsky.

Additional information

Author contributions: RAK and MU conceived the ideas and led the writing of the manuscript. RAK, MU, RF, JH, and SM designed methodology. JKZ, JH, LM, RM, and MU collected data. RAK, JH, SM, and RF analyzed the data. All authors contributed critically to the drafts and gave final approval for publication.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 411 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ankori-Karlinsky, R., Hall, J., Murphy, L. et al. Chronic Winds Reduce Tropical Forest Structural Complexity Regardless of Climate, Topography, or Forest Age. Ecosystems 27, 479–491 (2024). https://doi.org/10.1007/s10021-024-00900-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-024-00900-5

Keywords

Navigation