Skip to main content

Inference in a Partial Differential Equations Model of Pulmonary Arterial and Venous Blood Circulation Using Statistical Emulation

  • Conference paper
  • First Online:
Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2016)

Abstract

The present article addresses the problem of inference in a multiscale computational model of pulmonary arterial and venous blood circulation. The model is a computationally expensive simulator which, given specific parameter values, solves a system of nonlinear partial differential equations and returns predicted pressure and flow values at different locations in the arterial and venous blood vessels. The standard approach in parameter calibration for computer code is to emulate the simulator using a Gaussian Process prior. In the present work, we take a different approach and emulate the objective function itself, i.e. the residual sum of squares between the simulations and the observed data. The Efficient Global Optimization (EGO) algorithm [2] is used to minimize the residual sum of squares. A generalization of the EGO algorithm that can handle hidden constraints is described. We demonstrate that this modified emulator achieves a reduction in the computational costs of inference by two orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 39.99
Price excludes VAT (USA)
Softcover Book
USD 54.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Vascular rarefaction is an old finding in patients with hypertension, and represents the condition of having fewer blood vessels per tissue volume.

  2. 2.

    See Eq. (4.14) in Rasmussen and Williams [9] Sect. 4.2.

  3. 3.

    In this context, surrogate or metamodel are synonyms for GP posterior mean, and were generated by the engineering community.

  4. 4.

    The presented results were obtained on a CentOS 7 machine using MATLAB®. Our code used to perform inference depends on the GPML toolbox by Rasmussen [9] and the standard MATLAB® Statistics Toolbox.

References

  1. Gelbart, M.A., Snoek, J., Adams, R.P.: Bayesian optimization with unknown constraints. In: Uncertainty in Artificial Intelligence (UAI) (2014)

    Google Scholar 

  2. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Global Optim. 13, 455–492 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Kuss, M.: Gaussian process models for robust regression, classification, and reinforcement learning. Ph.D. thesis, Technische Universität, Darmstadt (2006)

    Google Scholar 

  4. Mockus, J., Tiesis, V., Zilinskas, A.: The application of bayesian methods for seeking the extremum. Towards Global Optim. 2, 117–129 (1978)

    MATH  Google Scholar 

  5. Nickisch, H., Rasmussen, C.E.: Approximations for binary gaussian process classification. J. Mach. Learn. Res. 9, 2035–2078 (2008)

    MathSciNet  MATH  Google Scholar 

  6. Olufsen, M.S.: Structured tree outflow condition for blood flow in larger systemic arteries. Am. J. Physiol. Heart Circulatory Physiol. 276, 257–268 (1999)

    Google Scholar 

  7. Perttunen, C.D., Jones, D.R., Stuckman, B.E.: Lipschitzian optimization without the lipschitz constant. J. Optim. Theory Appl. 79(1), 157–181 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Qureshi, M.U., Vaughan, G.D.A., Sainsbury, C., et al.: Numerical simulation of blood flow and pressure drop in the pulmonary arterial and venous circulation. Biomech. Model. Mechanobiol. 13(5), 1137–1154 (2014)

    Article  Google Scholar 

  9. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. The MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  10. Rosenkranz, S., Preston, I.R.: Right heart catheterisation: best practice and pitfalls in pulmonary hypertension. Eur. Respir. Rev. 24, 642–652 (2015)

    Article  Google Scholar 

  11. Sasena, M.J.: Optimization of Computer Simulations via Smoothing Splines and Kriging Metamodels. MSc Thesis, University of Michigan (1998)

    Google Scholar 

  12. Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. In: Advances in Neural Information Processing Systems, pp. 2951–2959 (2012)

    Google Scholar 

  13. Snoek, J.: Bayesian Optimization and Semiparametric Models with Applications to Assistive Technology. Ph.D. thesis, University of Toronto, Toronto, Canada (2013)

    Google Scholar 

  14. Ugray, Z., et al.: Scatter search and local nlp solvers: a multistart framework for global optimization. INFORMS J. Comput. 19(3), 328–340 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Vanhatalo, J., et al.: GPstuff: Bayesian modeling with Gaussian processes. J. Mach. Learn. Res. 14(1), 1175–1179 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Wang, H.M., et al.: Structure-based finite strain modelling of the human left ventricle in diastole. Int. J. Numer. Methods Biomed. Eng. 29, 83–103 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

UN is supported by a scholarship from the Biometrika Trust. SofTMech is a research centre for Multi-scale Modelling in Soft Tissue Mechanics, funded by EPSRC (grant no. EP/N014642/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umberto Noè .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Noè, U., Chen, W., Filippone, M., Hill, N., Husmeier, D. (2017). Inference in a Partial Differential Equations Model of Pulmonary Arterial and Venous Blood Circulation Using Statistical Emulation. In: Bracciali, A., Caravagna, G., Gilbert, D., Tagliaferri, R. (eds) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2016. Lecture Notes in Computer Science(), vol 10477. Springer, Cham. https://doi.org/10.1007/978-3-319-67834-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67834-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67833-7

  • Online ISBN: 978-3-319-67834-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics